Mapping a Decade of Research on Artificial Intelligence and Augmented Reality in Physics Education: A Bibliometric Analysis (2016–2025)
DOI:
https://doi.org/10.58524/oler.v5i2.901Keywords:
Artificial Intelligence, Augmented Reality, Bibliometric Analysis, Physics Education, Educational TechnologyAbstract
This study presents a Scopus-based bibliometric mapping of a decade of research on Artificial Intelligence (AI) and Augmented Reality (AR) in physics education, spanning the period from 2016 to 2025. The dataset was retrieved from Scopus on August 2, 2025, and, following PRISMA-style screening and filtering, comprised 1,038 English-language journal articles at the final publication stage. Bibliometric analyses were conducted using Bibliometrix (Biblioshiny), VOSviewer, and Microsoft Excel to examine publication growth, leading sources and authors, geographic and institutional contributions, collaboration patterns, and conceptual structures through keyword co-occurrence, thematic mapping, and thematic evolution. The results indicate accelerated publication growth after 2019 and an interdisciplinary dissemination pattern across education- and technology-facing outlets. Conceptual mapping suggests that AI-related themes (e.g., adaptive and data-informed learning support) and AR-related themes (e.g., interactive visualization and representational learning) constitute the dominant pillars of the field, while physics-education-specific learning mechanisms (e.g., conceptual change, multi-representational reasoning, and inquiry/laboratory enactment) are unevenly foregrounded across clusters. Because this is a bibliometric study, the findings provide a structured overview of research patterns and thematic orientations rather than causal evidence of learning effectiveness, thereby informing future empirical and design-based studies that connect AI/AR developments to physics-education-specific learning mechanisms and implementation contexts.
References
Agyare, B., Asare, J., Kraishan, A., Nkrumah, I., & Adjekum, D. K. (2025). A cross-national assessment of artificial intelligence (AI) chatbot user perceptions in collegiate physics education. Computers and Education: Artificial Intelligence, 8, 100365. https://doi.org/10.1016/j.caeai.2025.100365
Al-Ansi, A. M., Jaboob, M., Garad, A., & Al-Ansi, A. (2023). Analyzing augmented reality (AR) and virtual reality (VR) recent development in education. Social Sciences & Humanities Open, 8(1), 100532. https://doi.org/10.1016/j.ssaho.2023.100532
Al Faruq, M. S. S., Sunoko, A., Ibda, H., & Wahyudi, K. (2023). Digital learning management using OpenAI ChatGPT: A systematic literature review. International Journal of Learning, Teaching and Educational Research, 22(12), 21–41. https://doi.org/10.26803/ijlter.22.12.2
Alqahtani, N., & Wafula, Z. (2025). Artificial intelligence integration: Pedagogical strategies and policies at leading universities. Innovative Higher Education, 50(2), 665–684. https://doi.org/10.1007/s10755-024-09749-x
Alzahrani, N. M. (2020). Augmented reality: A systematic review of its benefits and challenges in e-learning contexts. Applied Sciences, 10(16), 5660. https://doi.org/10.3390/app10165660
Amiruddin, M. Z. B., Samsudin, A., Suhandi, A., Coştu, B., & Prahani, B. K. (2025). Scientific mapping and trend of conceptual change: A bibliometric analysis. Social Sciences & Humanities Open, 11, 101208. https://doi.org/10.1016/j.ssaho.2024.101208
Angra, S., Jangra, S., Gulzar, Y., Sharma, B., Singh, G., & Onn, C. W. (2025). Twenty-two years of advancements in augmented and virtual reality: A bibliometric and systematic review. Frontiers in Computer Science, 7, 1470038. https://doi.org/10.3389/fcomp.2025.1470038
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
Arymbekov, B., Turekhanova, K., & Turdalyuly, M. (2024). The effect of augmented reality supported teaching activities on academic success and motivation to learn nuclear physics among high school pupils. International Journal of Information and Education Technology, 14(5), 743–760. https://doi.org/10.18178/ijiet.2024.14.5.2099
Benvenuti, M., Cangelosi, A., Weinberger, A., Mazzoni, E., Benassi, M., Barbaresi, M., & Orsoni, M. (2023). Artificial intelligence and human behavioral development: A perspective on new skills and competences acquisition for the educational context. Computers in Human Behavior, 148, 107903. https://doi.org/10.1016/j.chb.2023.107903
Bessas, N., Tzanaki, E., Vavougios, D., & Plagianakos, V. P. (2025). The role of ChatGPT in junior high school physics education: Insights from teachers and students and guidelines for optimal use. Social Sciences & Humanities Open, 11, 101610. https://doi.org/10.1016/j.ssaho.2025.101610
Buchner, J. (2025). Playing an augmented reality escape game promotes learning about fake news. Technology, Knowledge and Learning, 30(1), 425–445. https://doi.org/10.1007/s10758-024-09749-y
Buchner, J., Buntins, K., & Kerres, M. (2022). The impact of augmented reality on cognitive load and performance: A systematic review. Journal of Computer Assisted Learning, 38(1), 285–303. https://doi.org/10.1111/jcal.12617
Cabero-Almenara, J., Barroso-Osuna, J., Llorente-Cejudo, C., & Fernández Martínez, M. del M. (2019). Educational uses of augmented reality (AR): Experiences in educational science. Sustainability, 11(18), 4990. https://doi.org/10.3390/su11184990
Cai, S., Liu, C., Wang, T., Liu, E., & Liang, J. (2021). Effects of learning physics using augmented reality on students’ self-efficacy and conceptions of learning. British Journal of Educational Technology, 52(1), 235–251. https://doi.org/10.1111/bjet.13020
Chandran, M. C. S., Chandran, R., Das, D., & Vinodkumar, K. (2025). Examining the role of smart cities and sustainability research in achieving SDGs through a bibliometric lens. Discover Sustainability, 6(1), 679. https://doi.org/10.1007/s43621-025-01596-w
Chithra, N., & Bhambri, P. (2024). Ethics in sustainable technology. In Handbook of technological sustainability (pp. 245–256). CRC Press. https://doi.org/10.1201/9781003475989-21
Chong, C., Zhang, X., Kong, G., Ma, L., Li, Z., Ni, W., & Yu, E.-H.-C. (2021). A visualization method of the economic input–output table: Mapping monetary flows in the form of Sankey diagrams. Sustainability, 13(21), 12239. https://doi.org/10.3390/su132112239
Costas, R., & Bordons, M. (2007). The h-index: Advantages, limitations and its relation with other bibliometric indicators at the micro level. Journal of Informetrics, 1(3), 193–203. https://doi.org/10.1016/j.joi.2007.02.001
Dong, Y., Hou, J., Zhang, N., & Zhang, M. (2020). Research on how human intelligence, consciousness, and cognitive computing affect the development of artificial intelligence. Complexity, 2020, 1680845. https://doi.org/10.1155/2020/1680845
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
Ejjami, R. (2024). The future of learning: AI-based curriculum development. International Journal for Multidisciplinary Research, 6(4), 1–31. https://doi.org/10.36948/ijfmr.2024.v06i04.24441
Fergnani, A. (2019). Mapping futures studies scholarship from 1968 to present: A bibliometric review of thematic clusters, research trends, and research gaps. Futures, 105, 104–123. https://doi.org/10.1016/j.futures.2018.09.007
Fidan, M., & Tuncel, M. (2019). Integrating augmented reality into problem-based learning: The effects on learning achievement and attitude in physics education. Computers & Education, 142, 103635. https://doi.org/10.1016/j.compedu.2019.103635
Golle, P., Staddon, J., & Waters, B. (2004). Secure conjunctive keyword search over encrypted data. In International Conference on Applied Cryptography and Network Security (pp. 31–45). https://doi.org/10.1007/978-3-540-24852-1_3
Guerrero-Zambrano, M., Sanchez-Alvarado, L., Valarezo-Chamba, B. V.-C., & Lamilla-Rubio, E. (2025). Transforming physics teacher training through ChatGPT: A study on usability and impact. Education Sciences, 15(7), 887. https://doi.org/10.3390/educsci15070887
Gusteti, M. U., Musdi, E., Dewata, I., & Rasli, A. M. (2025). A ten-year bibliometric study on augmented reality in mathematical education. European Journal of Educational Research, 14(3), 723–741. https://doi.org/10.12973/eu-jer.14.3.723
Herrera-Franco, G., Montalván-Burbano, N., Carrión-Mero, P., Apolo-Masache, B., & Jaya-Montalvo, M. (2020). Research trends in geotourism: A bibliometric analysis using the Scopus database. Geosciences, 10(10), 379. https://doi.org/10.3390/geosciences10100379
Hodge, D. R., & Lacasse, J. R. (2011). Evaluating journal quality: Is the H-index a better measure than impact factors? Research on Social Work Practice, 21(2), 222–230. https://doi.org/10.1177/1049731510369141
Horta, H., & Santos, J. M. (2016). The impact of publishing during PhD studies on career research publication, visibility, and collaborations. Research in Higher Education, 57(1), 28–50. https://doi.org/10.1007/s11162-015-9380-0
Huda, M. (2019). Empowering application strategy in technology adoption: Insights from professional and ethical engagement. Journal of Science and Technology Policy Management, 10(1), 172–192. https://doi.org/10.1108/JSTPM-09-2017-0044
Hutson, J., Fulcher, B., & Ratican, J. (2024). Enhancing assessment and feedback in game design programs: Leveraging generative AI for efficient and meaningful evaluation. International Journal of Educational Research and Innovation, 22, 1–???. https://doi.org/10.46661/ijeri.11038
Jang, H. (2025). Less is more: A multimodal exploration of how limited AI shapes team physics problem solving. 새물리, 75(5), 449–467. https://doi.org/10.3938/NPSM.75.449
Jang, H., & Choi, H. (2025). A double-edged sword: Physics educators’ perspectives on utilizing ChatGPT and its future in classrooms. Journal of Science Education and Technology, 34(2), 267–283. https://doi.org/10.1007/s10956-024-10173-1
Kabudi, T., Pappas, I., & Olsen, D. H. (2021). AI-enabled adaptive learning systems: A systematic mapping of the literature. Computers and Education: Artificial Intelligence, 2, 100017. https://doi.org/10.1016/j.caeai.2021.100017
Kalantari, A., Kamsin, A., Kamaruddin, H. S., Ale Ebrahim, N., Gani, A., Ebrahimi, A., & Shamshirband, S. (2017). A bibliometric approach to tracking big data research trends. Journal of Big Data, 4, Article 1–18. https://doi.org/10.1186/s40537-017-0088-1
Kapoor, K. K., Tamilmani, K., Rana, N. P., Patil, P., Dwivedi, Y. K., & Nerur, S. (2018). Advances in social media research: Past, present and future. Information Systems Frontiers, 20, 531–558. https://doi.org/10.1007/s10796-017-9810-y
Karim, S. N. M., Karim, A. A., & Kamsin, I. F. (2024). FizaAR: An augmented reality learning kit integrating social cognitive theory in learning physics. International Journal of Information and Education Technology, 14(11), 1600–1610. https://doi.org/10.18178/ijiet.2024.14.11.2191
Kelly, J., Sadeghieh, T., & Adeli, K. (2014). Peer review in scientific publications: Benefits, critiques, & a survival guide. EJIFCC, 25(3), 227–243.
Kirby, A. (2023). Exploratory bibliometrics: Using VOSviewer as a preliminary research tool. Publications, 11(1), 10. https://doi.org/10.3390/publications11010010
Knight, L. V., & Steinbach, T. A. (2008). Selecting an appropriate publication outlet: A comprehensive model of journal selection criteria for researchers in a broad range of academic disciplines. International Journal of Doctoral Studies, 3, 39–53. https://doi.org/10.28945/3289
Kökver, Y., Pektaş, H. M., & Çelik, H. (2025). Artificial intelligence applications in education: Natural language processing in detecting misconceptions. Education and Information Technologies, 30(3), 3035–3066. https://doi.org/10.1007/s10639-024-12919-1
Kortemeyer, G. (2023). Could an artificial-intelligence agent pass an introductory physics course? Physical Review Physics Education Research, 19(1), 010132. https://doi.org/10.1103/PhysRevPhysEducRes.19.010132
Kregear, T., Babayeva, M., & Widenhorn, R. (2025). Analysis of student interactions with a large language model in an introductory physics lab setting. International Journal of Artificial Intelligence in Education, 1–24. https://doi.org/10.1007/s40593-025-00489-3
Krenn, M., Pollice, R., Guo, S. Y., Aldeghi, M., Cervera-Lierta, A., Friederich, P., dos Passos Gomes, G., Häse, F., Jinich, A., & Nigam, A. (2022). On scientific understanding with artificial intelligence. Nature Reviews Physics, 4(12), 761–769. https://doi.org/10.1038/s42254-022-00518-3
Kumar, R., Saxena, S., Kumar, V., Prabha, V., Kumar, R., & Kukreti, A. (2024). Service innovation research: A bibliometric analysis using VOSviewer. Competitiveness Review: An International Business Journal, 34(4), 736–760. https://doi.org/10.1108/CR-01-2023-0010
Laumann, D., Schlummer, P., Abazi, A., Borkamp, R., Lauströer, J., Pernice, W., Schuck, C., Schulz-Schaeffer, R., & Heusler, S. (2024). Analyzing the effective use of augmented reality glasses in university physics laboratory courses for the example topic of optical polarization. Journal of Science Education and Technology, 33(5), 668–685. https://doi.org/10.1007/s10956-024-10112-0
Lee, J. J., & Haupt, J. P. (2021). Scientific globalism during a global crisis: Research collaboration and open access publications on COVID-19. Higher Education, 81(5), 949–966. https://doi.org/10.1007/s10734-020-00589-0
Lescrauwaet, L., Wagner, H., Yoon, C., & Shukla, S. (2022). Adaptive legal frameworks and economic dynamics in emerging technologies: Navigating the intersection for responsible innovation. Law and Economics, 16(3), 202–220. https://doi.org/10.35335/laweco.v16i3.61
Llorente de Pedro, M., Suárez, A., Algar, J., Díaz-Flores García, V., Andreu-Vázquez, C., & Freire, Y. (2025). Assessing ChatGPT’s reliability in endodontics: Implications for AI-enhanced clinical learning. Applied Sciences, 15(10), 5231. https://doi.org/10.3390/app15105231
Maltseva, D., & Batagelj, V. (2020). Towards a systematic description of the field using keywords analysis: Main topics in social networks. Scientometrics, 123(1), 357–382. https://doi.org/10.1007/s11192-020-03365-0
Marchiori, D. M., Popadiuk, S., Mainardes, E. W., & Rodrigues, R. G. (2021). Innovativeness: A bibliometric vision of the conceptual and intellectual structures and the past and future research directions. Scientometrics, 126(1), 55–92. https://doi.org/10.1007/s11192-020-03753-6
McAllister, J. T., Lennertz, L., & Atencio Mojica, Z. (2022). Mapping a discipline: A guide to using VOSviewer for bibliometric and visual analysis. Science & Technology Libraries, 41(3), 319–348. https://doi.org/10.1080/0194262X.2021.1991547
Mejia, C., Wu, M., Zhang, Y., & Kajikawa, Y. (2021). Exploring topics in bibliometric research through citation networks and semantic analysis. Frontiers in Research Metrics and Analytics, 6, Article 742311. https://doi.org/10.3389/frma.2021.742311
Mohamadou, Y., Halidou, A., & Kapen, P. T. (2020). A review of mathematical modeling, artificial intelligence and datasets used in the study, prediction and management of COVID-19. Applied Intelligence, 50(11), 3913–3925. https://doi.org/10.1007/s10489-020-01770-9
Mohrman, K., Ma, W., & Baker, D. (2008). The research university in transition: The emerging global model. Higher Education Policy, 21(1), 5–27. https://doi.org/10.1057/palgrave.hep.8300175
Mortazavi, S., Hajikhani, A., Laine, I., & Salloum, C. (2025). Mapping the discourse of sustainable development goals: A mixed-method bibliometric and thematic exploration. Management Decision. https://doi.org/10.1108/MD-10-2024-2455
Mukherjee, D., Lim, W. M., Kumar, S., & Donthu, N. (2022). Guidelines for advancing theory and practice through bibliometric research. Journal of Business Research, 148, 101–115. https://doi.org/10.1016/j.jbusres.2022.01.022
Nasir, M., & Fakhruddin, Z. (2023). Design and analysis of multimedia mobile learning based on augmented reality to improve achievement in physics learning. International Journal of Information and Education Technology, 13(6), 993–1000. https://doi.org/10.18178/ijiet.2023.13.6.1897
Orduña-Malea, E., & Costas, R. (2021). Link-based approach to study scientific software usage: The case of VOSviewer. Scientometrics, 126(9), 8153–8186. https://doi.org/10.1007/s11192-021-04082-y
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., & Moher, D. (2021). Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. Journal of Clinical Epidemiology, 134, 103–112. https://doi.org/10.1016/j.jclinepi.2021.02.003
Papanastasiou, G., Drigas, A., Skianis, C., Lytras, M., & Papanastasiou, E. (2019). Virtual and augmented reality effects on K-12, higher and tertiary education students’ twenty-first century skills. Virtual Reality, 23(4), 425–436. https://doi.org/10.1007/s10055-018-0363-2
Park, J. (2025a). An analysis of pre-service teachers’ proposals for improving elementary physics experiments through the use of augmented reality. New Physics: Sae Mulli, 75, 65-73. https://doi.org/10.3938/NPSM.75.65
Park, J. (2025b). Development of physics education content using AR-HMD: Focusing on image formation by convex lenses. New Physics: Sae Mulli, 75, 56-64. https://doi.org/10.3938/NPSM.75.56
Polverini, G., Melin, J., Önerud, E., & Gregorcic, B. (2025). Performance of ChatGPT on tasks involving physics visual representations: The case of the brief electricity and magnetism assessment. Physical Review Physics Education Research, 21(1), 010154. https://doi.org/10.1103/PhysRevPhysEducRes.21.010154
Prahani, B. K., Saphira, H. V., Wibowo, F. C., & Sulaeman, N. F. (2022). Trend and visualization of virtual reality & augmented reality in physics learning from 2002–2021. Journal of Turkish Science Education, 19(4), 1096–1118. https://doi.org/10.36681/tused.2022.164
Rahmat, A. D., Kuswanto, H., Wilujeng, I., & Perdana, R. (2023). Implementation of mobile augmented reality on physics learning in junior high school students. Journal of Education and E-Learning Research, 10(2), 132–140. https://doi.org/10.20448/jeelr.v10i2.4474
Rapanta, C., Botturi, L., Goodyear, P., Guàrdia, L., & Koole, M. (2021). Balancing technology, pedagogy and the new normal: Post-pandemic challenges for higher education. Postdigital Science and Education, 3(3), 715–742. https://doi.org/10.1007/s42438-021-00249-1
Ravenscroft, J., Liakata, M., Clare, A., & Duma, D. (2017). Measuring scientific impact beyond academia: An assessment of existing impact metrics and proposed improvements. PLoS ONE, 12(3), e0173152. https://doi.org/10.1371/journal.pone.0173152
Rizki, I. A., Mirsa, F. R., Islamiyah, A. N., Saputri, A. D., Ramadani, R., & Habibbulloh, M. (2025). Ethnoscience-enhanced physics virtual simulation and augmented reality with inquiry learning: Impact on students’ creativity and motivation. Thinking Skills and Creativity, 101846. https://doi.org/10.1016/j.tsc.2025.101846
Rojas-Sánchez, M. A., Palos-Sánchez, P. R., & Folgado-Fernández, J. A. (2023). Systematic literature review and bibliometric analysis on virtual reality and education. Education and Information Technologies, 28(1). https://doi.org/10.1007/s10639-022-11167-5
Roldan-Valadez, E., Salazar-Ruiz, S. Y., Ibarra-Contreras, R., & Rios, C. (2019). Current concepts on bibliometrics: A brief review about impact factor, Eigenfactor score, CiteScore, SCImago Journal Rank, source-normalised impact per paper, h-index, and alternative metrics. Irish Journal of Medical Science, 188, 939–951. https://doi.org/10.1007/s11845-018-1936-5
Ropawandi, D., Halim, L., & Husnin, H. (2022). Augmented reality (AR) technology-based learning: The effect on physics learning during the COVID-19 pandemic. International Journal of Information and Education Technology, 12(2), 132–140. https://doi.org/10.18178/ijiet.2022.12.2.1596
Sajja, R., Sermet, Y., Cikmaz, M., Cwiertny, D., & Demir, I. (2024). Artificial intelligence-enabled intelligent assistant for personalized and adaptive learning in higher education. Information, 15(10), 596. https://doi.org/10.3390/info15100596
Sarker, I. H. (2022). AI-based modeling: Techniques, applications and research issues toward automation, intelligent and smart systems. SN Computer Science, 3(2), 158. https://doi.org/10.1007/s42979-022-01043-x
Sedkaoui, S., & Benaichouba, R. (2024). Generative AI as a transformative force for innovation: A review of opportunities, applications and challenges. European Journal of Innovation Management. https://doi.org/10.1108/EJIM-02-2024-0129
Siemens, G., Marmolejo-Ramos, F., Gabriel, F., Medeiros, K., Marrone, R., Joksimovic, S., & de Laat, M. (2022). Human and artificial cognition. Computers and Education: Artificial Intelligence, 3, 100107. https://doi.org/10.1016/j.caeai.2022.100107
Skute, I., Zalewska-Kurek, K., Hatak, I., & de Weerd-Nederhof, P. (2019). Mapping the field: A bibliometric analysis of the literature on university–industry collaborations. The Journal of Technology Transfer, 44(3), 916–947. https://doi.org/10.1007/s10961-017-9637-1
Soegoto, E. S., Rafdhi, A. A., Abduh, A., Rosmaladewi, R., & Haristiani, N. (2025). Emerging applications of IoT, machine learning, virtual reality, augmented reality and artificial intelligence in monitoring systems: A comprehensive review and analysis. Journal of Engineering Science and Technology, 20(2), 404–426.
Soliman, M. M., Ahmed, E., Darwish, A., & Hassanien, A. E. (2024). Artificial intelligence powered metaverse: Analysis, challenges and future perspectives. Artificial Intelligence Review, 57(2), 36. https://doi.org/10.1007/s10462-023-10641-x
Stubbs, M. (2010). Three concepts of keywords. In Keyness in texts (pp. 21–42). John Benjamins. https://doi.org/10.1075/scl.41.03stu
Sung, N.-J., Ma, J., Choi, Y.-J., & Hong, M. (2019). Real-time augmented reality physics simulator for education. Applied Sciences, 9(19), 4019. https://doi.org/10.3390/app9194019
Templier, M., & Paré, G. (2018). Transparency in literature reviews: An assessment of reporting practices across review types and genres in top IS journals. European Journal of Information Systems, 27(5), 503–550. https://doi.org/10.1080/0960085X.2017.1398880
Tschisgale, P., Wulff, P., & Kubsch, M. (2023). Integrating artificial intelligence-based methods into qualitative research in physics education research: A case for computational grounded theory. Physical Review Physics Education Research, 19(2), 020123. https://doi.org/10.1103/PhysRevPhysEducRes.19.020123
van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
van Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111, 1053–1070. https://doi.org/10.1007/s11192-017-2300-7
Wang, W., Zhao, Y., Wu, Y. J., & Goh, M. (2023). Factors of dropout from MOOCs: A bibliometric review. Library Hi Tech, 41(2), 432–453. https://doi.org/10.1108/LHT-06-2022-0306
Weismayer, C., & Pezenka, I. (2017). Identifying emerging research fields: A longitudinal latent semantic keyword analysis. Scientometrics, 113(3), 1757–1785. https://doi.org/10.1007/s11192-017-2555-z
Werdhiana, I. K., Kaharu, S. N., Tule, R., & Mansyur, J. (2025). ChatGPT-4o’s reasoning performance on two-tier test of static fluid. International Journal of Information and Education Technology, 15(3), 629–639. https://doi.org/10.18178/ijiet.2025.15.3.2271
Wink, R., & Bonivento, W. M. (2023). Artificial intelligence: New challenges and opportunities in physics education. In New challenges and opportunities in physics education (pp. 427–434). https://doi.org/10.1007/978-3-031-37387-9_27
Wolniak, R., & Stecuła, K. (2024). Artificial intelligence in smart cities—Applications, barriers, and future directions: A review. Smart Cities, 7(3), 1346–1389. https://doi.org/10.3390/smartcities7030057
Yehya, F., ElSayary, A., Al Murshidi, G., & Al Zaabi, A. (2025). Artificial intelligence integration and teachers’ self-efficacy in physics classrooms. Eurasia Journal of Mathematics, Science and Technology Education, 21(8), em2679. https://doi.org/10.29333/ejmste/16660
Zawacki-Richter, O., & Naidu, S. (2016). Mapping research trends from 35 years of publications in Distance Education. Distance Education, 37(3), 245–269. https://doi.org/10.1080/01587919.2016.1185079
Zhao, X., Ren, Y., & Cheah, K. S. L. (2023). Leading virtual reality (VR) and augmented reality (AR) in education: Bibliometric and content analysis from the Web of Science (2018–2022). SAGE Open, 13(3), 1-23. https://doi.org/10.1177/21582440231190821
Zupic, I., & Čater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods, 18(3), 429–472. https://doi.org/10.1177/1094428114562629
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Zainuddin Zainuddin, Misbah Misbah, Mastuang Mastuang, Qamariah Qamariah, Mohd Zaidi Bin Amiruddin, Nor Farahwahidah Abdul Rahman

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Online Learning in Educational Research is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Online Learning in Educational Research agree to the following terms:
Copyright Retention: Authors retain the copyright of their work without any restrictions.
Publishing Rights: Authors retain the right to publish and distribute their work without any restrictions.
License Agreement: By publishing with Online Learning in Educational Research, authors agree that their work will be licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA). This license allows others to share and adapt the work, provided that appropriate credit is given, any changes are indicated, and the new creations are licensed under the same terms.
