AI Literacy Meets Ethics: Critical Appraisal's Mediating Role in Shaping Ethical Awareness in Higher Education

Authors

DOI:

https://doi.org/10.58524/oler.v5i1.508

Keywords:

AI Literacy, Artificial Intelligence, Ethical Awareness, PLS-SEM Analysis

Abstract

As artificial intelligence increasingly permeates higher education systems worldwide, developing students' ethical awareness has become essential for responsible AI implementation. This study seeks to examine the connections between technical understanding, applied knowledge, and critical appraisal in shaping ethical awareness within the context of AI literacy. The study utilizes a quantitative method, applying Partial Least Squares Structural Equation Modeling (PLS-SEM) to data gathered from 322 university students. The findings indicate that technical understanding has a direct favorable influence of 0.180 on ethical awareness, while applied knowledge demonstrates a stronger impact of 0.467. Critical appraisal serves as a significant complementary partial mediator, with indirect path coefficients of 0.083 for technical understanding and 0.155 for applied knowledge, strengthening their relationships with ethical awareness. This study concludes that AI literacy educational programs should not only emphasize technical and applied knowledge but also foster critical appraisal skills to promote ethical AI usage.

References

Agusnaya, N., Wahid, A., Akbar, Muh., Hidayat M, W., Sanatang, S., Soeharto, S., & Lavicza, Z. (2024). Enhancing digital learning in higher education: The mediating role of academic self-efficacy in motivation and engagement. Online Learning In Educational Research (OLER), 4(2), 167–183. https://doi.org/10.58524/oler.v4i2.505

Ahmad, S. F., Han, H., Alam, M. M., Rehmat, Mohd. K., Irshad, M., Arraño-Muñoz, M., & Ariza-Montes, A. (2023). Impact of artificial intelligence on human loss in decision making, laziness and safety in education. Humanities and Social Sciences Communications, 10(1), 311. https://doi.org/10.1057/s41599-023-01787-8

Akavova, A., Temirkhanova, Z., & Lorsanova, Z. (2023). Adaptive learning and artificial intelligence in the educational space. E3S Web of Conferences, 451, 06011. https://doi.org/10.1051/e3sconf/202345106011

Alenezi, F. (2023). Artificial intelligence versus arab universities: An enquiry into the saudi context. Scientific Journal of King Faisal University: Humanities and Management Sciences, 24(1), 1444. https://doi.org/10.37575/h/edu/220038

Ansari, W. (2023). The ethical implications of artificial intelligence on the human society. ScienceOpen Preprints. https://doi.org/10.14293/PR2199.000341.v1

Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182. https://doi.org/10.1037/0022-3514.51.6.1173

Brusseau, J. (2023). From the ground truth up: Doing AI ethics from practice to principles. AI & SOCIETY, 38(4), 1651–1657. https://doi.org/10.1007/s00146-021-01336-4

Burden, J. (2024). Evaluating AI Evaluation: Perils and Prospects. (arXiv:2407.09221). arXiv.

Burgsteiner, H., Kandlhofer, M., & Steinbauer, G. (2016). IRobot: Teaching the basics of artificial intelligence in high schools. Proceedings of the AAAI Conference on Artificial Intelligence, 30(1). https://doi.org/10.1609/aaai.v30i1.9864

Campbell, S., Greenwood, M., Prior, S., Shearer, T., Walkem, K., Young, S., Bywaters, D., & Walker, K. (2020). Purposive sampling: Complex or simple? Research case examples. Journal of Research in Nursing, 25(8), 652–661. https://doi.org/10.1177/1744987120927206

Chin-Yee, B., Nimmon, L., & Veen, M. (2023). Technical difficulties: Teaching critical philosophical orientations toward technology. Teaching and Learning in Medicine, 35(2), 240–249. https://doi.org/10.1080/10401334.2022.2130334

Conlon, E., & Zandvoort, H. (2011). Broadening ethics teaching in engineering: Beyond the individualistic approach. Science and Engineering Ethics, 17(2), 217–232. https://doi.org/10.1007/s11948-010-9205-7

Creswell, J. W. (2008). Research design: Qualitative, quantitative, and mixed methods approaches (2. ed., [Nachdr.]). Sage Publishing.

Druga, S., Vu, S. T., Likhith, E., & Qiu, T. (2019). Inclusive AI literacy for kids around the world. In Proceedings of FabLearn 2019 (pp. 104-111). https://doi.org/10.1145/3311890.3311904

Eisbach, S. (2023). Optimizing human-AI collaboration: Effects of motivation and accuracy information in AI-supported decision-making. Computers in Human Behavior: Artificial Humans, 1(2), 100015. https://doi.org/10.1016/j.chbah.2023.100015

Federico, G., Reynaud, E., Navarro, J., Lesourd, M., Gaujoux, V., Lamberton, F., Ibarrola, D., Cavaliere, C., Alfano, V., Aiello, M., Salvatore, M., Seguin, P., Schnebelen, D., Brandimonte, M. A., Rossetti, Y., & Osiurak, F. (2022). The cortical thickness of the area PF of the left inferior parietal cortex mediates technical-reasoning skills. Scientific Reports, 12(1), 11840. https://doi.org/10.1038/s41598-022-15587-8

Fior, G., Fonda, C., & Canessa, E. (2024). Hands-on STEM learning experiences using digital technologies (arXiv:2408.00781). arXiv.

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104

Grosseck, G., Bran, R. A., & Țîru, L. G. (2023). Digital assessment: A survey of romanian higher education teachers’ practices and needs. Education Sciences, 14(1), 32. https://doi.org/10.3390/educsci14010032

Hair, J., & Alamer, A. (2022). Partial least squares structural equation modeling (PLS-SEM) in second language and education research: Guidelines using an applied example. Research Methods in Applied Linguistics, 1(3), 100027. https://doi.org/10.1016/j.rmal.2022.100027

Hair, J. F. (2006). Multivariate data analysis. Pearson Prentice Hall.

Hair, J. F. (2017). A primer on partial least squares structural equation modeling (PLS-SEM). International Journal of Research & Method in Education, 38(2), 220–221. https://doi.org/10.1080/1743727X.2015.1005806

Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial least squares structural equation modeling (PLS-SEM) using R: A workbook. Springer International Publishing. https://doi.org/10.1007/978-3-030-80519-7

Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203

Hayes, A. F., & Scharkow, M. (2013). The relative trustworthiness of inferential tests of the indirect effect in statistical mediation analysis: Does method really matter? Psychological Science, 24(10), 1918–1927. https://doi.org/10.1177/0956797613480187

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8

Hilkenmeier, F., Bohndick, C., Bohndick, T., & Hilkenmeier, J. (2020). Assessing distinctiveness in multidimensional instruments without access to raw data – A manifest fornell-larcker criterion. Frontiers in Psychology, 11, 223. https://doi.org/10.3389/fpsyg.2020.00223

Kandlhofer, M., Steinbauer, G., Hirschmugl-Gaisch, S., & Huber, P. (2016). Artificial intelligence and computer science in education: From kindergarten to university. In 2016 IEEE frontiers in education conference (FIE) (pp. 1-9). IEEE. https://doi.org/10.1109/FIE.2016.7757570

Krügel, S., Ostermaier, A., & Uhl, M. (2022). Zombies in the loop? Humans trust untrustworthy AI-advisors for ethical decisions. Philosophy & Technology, 35(1), 17. https://doi.org/10.1007/s13347-022-00511-9

Laupichler, M. C., Aster, A., Haverkamp, N., & Raupach, T. (2023). Development of the “Scale for the assessment of non-experts’ AI literacy” – An exploratory factor analysis. Computers in Human Behavior Reports, 12, 100338. https://doi.org/10.1016/j.chbr.2023.100338

Lee, S., Choi, D., Lee, M., Choi, J., & Lee, S. (2023). Fostering youth’s critical thinking competency about AI through exhibition. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3544548.3581159

Long, D., & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. In Proceedings of the 2020 CHI conference on human factors in computing systems (pp. 1-16). https://doi.org/10.1145/3313831.3376727

Mohamed, S. (2023). The development of an Arabic curriculum framework based on a compilation of salient features from CEFR level descriptors. The Language Learning Journal, 51(1), 33–47. https://doi.org/10.1080/09571736.2021.1923781

Morandini, S., Fraboni, F., De Angelis, M., Puzzo, G., Giusino, D., & Pietrantoni, L. (2023). The impact of artificial intelligence on workers’ skills: Upskilling and reskilling in organisations. Informing Science: The International Journal of an Emerging Transdiscipline, 26, 039–068. https://doi.org/10.28945/5078

Mudinillah, A., J. Y. F., & Noor, M. B. F. A. (2023). Understanding technological trends in education: How artificial intelligence helps learning in colleges in Susta. Journal Emerging Technologies in Education, 1(1), 47–58. https://doi.org/10.55849/jete.v1i1.192

Ng, D. T. K., Leung, J. K. L., Chu, S. K. W., & Qiao, M. S. (2021). Conceptualizing AI literacy: An exploratory review. Computers and Education: Artificial Intelligence, 2, 100041. https://doi.org/10.1016/j.caeai.2021.100041

Norman, G. (2010). Likert scales, levels of measurement and the “laws” of statistics. Advances in Health Sciences Education, 15(5), 625–632. https://doi.org/10.1007/s10459-010-9222-y

Nuraini, U., Restuningdiah, N., Sidharta, E. A., & Utami, H. (2021). Research-based learning to improve students’ critical thinking skills in studying business ethics: International Conference on Strategic Issues of Economics, Business and, Education (ICoSIEBE 2020), Medan, Indonesia. https://doi.org/10.2991/aebmr.k.210220.033

Pant, A., Hoda, R., Tantithamthavorn, C., & Turhan, B. (2024). Ethics in AI through the practitioner’s view: A grounded theory literature review. Empirical Software Engineering, 29, 67. https://doi.org/10.1007/s10664-024-10465-5

Pesic, J. (2007). The role of knowledge in critical thinking. Zbornik Instituta za pedagoska istrazivanja, 39(1), 32–47. https://doi.org/10.2298/ZIPI0701032P

Popescu, R.-I., Sabie, O. M., & Trușcă, M. I. (2023). The contribution of artificial intelligence to stimulating the innovation of educational services and university programs in public administration. Transylvanian Review of Administrative Sciences, 70 E, 85–108. https://doi.org/10.24193/tras.70E.5

Ranard, B. L., Park, S., Jia, Y., Zhang, Y., Alwan, F., Celi, L. A., & Lusczek, E. R. (2024). Minimizing bias when using artificial intelligence in critical care medicine. Journal of Critical Care, 82, 154796–154796. https://doi.org/10.1016/j.jcrc.2024.154796

Rauf, A., Fakhri, M. M., Fathahillah, F., Surianto, D. F., Baso, F., Fitria, A., & Amukune, S. (2024). Harnessing digital skills for academic success: Unveiling the power of learning motivation in computational thinking and tech integration. Online Learning In Educational Research (OLER), 4(2), 185–198. https://doi.org/10.58524/oler.v4i2.501

Rožman, M., Tominc, P., & Vrečko, I. (2023). Building skills for the future of work: Students’ perspectives on emerging jobs in the Data and AI Cluster through artificial intelligence in education. Environment and Social Psychology, 8(2). https://doi.org/10.54517/esp.v8i2.1670

Sloane, M., & Zakrzewski, J. (2022). German AI Start-Ups and AI Ethics: Using A Social Practice Lens for Assessing and Implementing Socio-Technical Innovation. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency (pp. 935-947). https://doi.org/10.1145/3531146.3533156

Styve, A., Virkki, O. T., & Naeem, U. (2024). Developing critical thinking practices interwoven with generative AI usage in an introductory programming course. 2024 IEEE Global Engineering Education Conference (EDUCON), 01–08. https://doi.org/10.1109/EDUCON60312.2024.10578746

Wang, X., & Cheng, Z. (2020). Cross-sectional studies. Chest, 158(1), S65–S71. https://doi.org/10.1016/j.chest.2020.03.012

Yadav, M., Mishra, D., Misra, S., Dewasiri, N. J., & Mittal, S. (2024). The impact of experiential learning on revitalizing critical thinking skills for workforce preparation. Advances in Higher Education and Professional Development Book Series, 353–370. https://doi.org/10.4018/979-8-3693-3856-8.ch012

Zhao, X., Lynch, J. G., & Chen, Q. (2010). Reconsidering baron and kenny: Myths and truths about mediation analysis. Journal of Consumer Research, 37(2), 197–206. https://doi.org/10.1086/651257

Downloads

Published

2025-06-15

How to Cite

AI Literacy Meets Ethics: Critical Appraisal’s Mediating Role in Shaping Ethical Awareness in Higher Education. (2025). Online Learning In Educational Research (OLER), 5(1), 57-71. https://doi.org/10.58524/oler.v5i1.508