Content Validity of Three-Tier Multiple Choice Virtual Reality-Based Assessment with Embedded Ethno-SSI Concepts on Acid-Base Topics

Authors

  • Zamira Zia'ul Huda Universitas Sebelas Maret
  • Sri Yamtinah Universitas Sebelas Maret
  • Ari Syahidul Shidiq Universitas Sebelas Maret

DOI:

https://doi.org/10.58524/oler.v5i1.665

Keywords:

Content validity, Ethno-socio-scientific issue, Misconceptions, Three-tier multiple choice, Virtual reality based assesment

Abstract

Research on acid-base misconceptions at the high school level is extensive, but studies at the university level remain limited. Due to the prevalence of these misconceptions, developing accurate instruments for early detection is crucial. This study developed a three-tier multiple-choice virtual reality-based assessment integrating the ETHNO-SSI concept for acid-base topics. The study employed the Borg and Gall R and D model to evaluate content validity.The study used a developmental design, with face validation by six expert reviewers using a rubric to evaluate content validity, construct relevance, clarity and contextual integration. Processing of the data involved the use of Aiken’s V index. The results also evidenced a high content validity for all the dimensions studied, indicating that the instrument is pedagogically sound and culturally relevant. By embedding Ethno-SSI in immersive VR platforms, this assessment approaches represents a new path in the pursuit of students’ conceptual challenges when dealing with sociocultural decision making in real-world conditions. This study provides valuable information to the development of multidimensional chemical assessment instruments to link sociocultural innovation, recover notions of acid-base misconceptions, and incorporate cultural relevance in chemistry education.

References

Aiken, L. R. (1985). Three coefficients for analyzing the reliability and validity of ratings. Educational and Psychological Measurement, 45(1), 131–142. https://doi.org/10.1177/0013164485451012

Arslan, H. O., Cigdemoglu, C., & Moseley, C. (2012). A three-tier diagnostic test to assess pre-service teachers’ misconceptions about global warming, greenhouse effect, ozone layer depletion, and acid rain. International Journal of Science Education, 34(11), 1667–1686. https://doi.org/10.1080/09500693.2012.680618

Azamat, J., Khodadust, M. R., & Bahrami Maddah, A. M. (2024). The role of technical english proficiency in chemistry education. Chemical Review and Letters, 7(8), 731–741.

Banawi, A., Sopandi, W., Kadarohman, A., & Solehuddin, M. (2022). Five-tier multiple-choice diagnostic test development: Empirical evidences to improve students’ science literacy. Proceedings of the International Conference on Madrasah Reform, 633(1), 131–138. https://doi.org/10.2991/assehr.k.220104.020

Barke, Hazari, A., & Yitbarek, S. (2009). Misconceptions in chemistry. In Misconceptions in Chemistry. Springer Berlin Heidelberg, 15-20. https://doi.org/10.1007/978-3-540-70989-3

Borg, W. R., & Gall, M. D. (1983). Educational Research: An Introduction. Longman.

Cetin-Dindar, A., & Geban, O. (2011). Development of a three-tier test to assess high school students’ understanding of acids and bases. Procedia - Social and Behavioral Sciences, 15, 600–604. https://doi.org/10.1016/j.sbspro.2011.03.147

Chen, C.-W., Andersson, B., & Zhu, J. (2023). A factor mixture model for item responses and certainty of response indices to identify student knowledge profiles. Journal of Educational Measurement, 60(1), 28–51. https://doi.org/10.1111/jedm.12344

Chen, L., Hui, C., Qun, H., Jianbo, X., & and Teng, H. (2022). Absorption, metabolism and bioavailability of flavonoids: a review. Critical Reviews in Food Science and Nutrition, 62(28), 7730–7742. https://doi.org/10.1080/10408398.2021.1917508

Coduto, J. R., Lazicki, A., & Leddy, J. (2024). Visualizing 3D objects in analytical chemistry. Journal of Chemical Education, 101(1), 77–87. https://doi.org/10.1021/acs.jchemed.3c00821

Di Natale, A. F., Repetto, C., Riva, G., & Villani, D. (2020). Immersive virtual reality in K-12 and higher education: A 10-year systematic review of empirical research. British Journal of Educational Technology, 51(6), 2006–2033. https://doi.org/10.1111/bjet.13030

Diani, R., Alfin, J., Anggraeni, Y. M., Mustari, M., & Fujiani, D. (2019). Four-Tier diagnostic test with certainty of response index on the concepts of fluid. Journal of Physics: Conference Series, 1155(1). https://doi.org/10.1088/1742-6596/1155/1/012078

Dood, A. J., Fields, K. B., & Raker, J. R. (2018). Using lexical analysis to predict lewis acid-base model use in responses to an acid-base proton-transfer reaction. Journal of Chemical Education, 95(8), 1267–1275. https://doi.org/10.1021/acs.jchemed.8b00177

Duca, A., Constantinescu, G.-G., & Iftene, A. (2024). Future education: Experimenting with chemical reactions in virtual reality. 18th International Conference on INnovations in Intelligent SysTems and Applications, INISTA 2024. Institute of Electrical and Electronics Engineers Inc, 1(1), 1-6. https://doi.org/10.1109/INISTA62901.2024.10683861

Elford, D., Lancaster, S. J., & Jones, G. A. (2022). Fostering motivation toward chemistry through augmented reality educational escape activities. A self-determination theory approach. Journal of Chemical Education, 99(10), 3406–3417. https://doi.org/10.1021/acs.jchemed.2c00428

Febu, R., Sudarmin, M, N., & W, S. (2016). Development of ethnoscience approach in the module theme substance additives to improve the cognitive learning outcome and student’s entrepreneurship. Journal of Physics: Conference Series, 755(1). https://doi.org/10.1088/1742-6596/755/1/011001

Finken, J., & Wölfel, M. (2023). Influence of immersive virtual reality on cognitive and affective learning goals. Lecture Notes in Networks and Systems, 581(1), 510–521. https://doi.org/10.1007/978-3-031-21569-8_48

Gkitzia, V., Salta, K., & Tzougraki, C. (2020). Students’ competence in translating between different types of chemical representations. Chemistry Education Research and Practice, 21(1), 307–330. https://doi.org/10.1039/C8RP00301G

Gulacar, O., Milkey, A., & Eilks, I. (2020). Exploring cluster changes in students’ knowledge structures throughout general chemistry. Eurasia Journal of Mathematics, Science and Technology Education, 16(6), 1850. https://doi.org/10.29333/EJMSTE/7860

Guruloo, T. N. M., & Osman, K. (2023). Integrating virtual reality laboratories (VRLs) in chemistry education: A systematic literature review. International Journal of Education, 15(4), 127. https://doi.org/10.5296/ije.v15i4.21372

Hadinugrahaningsih, T., Ridwan, A., Rahmawati, Y., Allanas, E., Cahya N., G., & Amalia, R. (2021). An analysis of chemistry student’s laboratory jargon in acid-base material using a 3E learning cycle. In M. M., R. Y., D. M., & F. E. (Eds.), AIP Conf. Proc. 2 April 2021; 2331 (1): 040035. https://doi.org/10.1063/5.0045512

Hakimah, N., Muchson, M., Herunata, H., Permatasari, M. B., & Santoso, A. (2021). Identification student misconceptions on reaction rate using a Google forms three-tier tests. In S. H., H. H., & R. D. (Eds.), AIP Conf. Proc. 2 March 2021; 2330 (1): 020020. https://doi.org/10.1063/5.0043114

Hammer, M., & Avram, E. M. G. (2024). Online interactive activity: Using a web-based multimedia activity to teach balancing chemical equations. Journal of Chemical Education, 101(10), 4510-4516. https://doi.org/10.1021/acs.jchemed.4c00786

Hendry, R. F. (2016). Structure as abstraction. Philosophy of Science, 83(5), 1070–1081. https://doi.org/10.1086/687939

Herunata, H., Wijaya, I., Sulistina, O., & Nazriati, N. (2024). The development of teaching materials based on conceptual understanding, chemical representation, and representational competence in chemical kinetics. In H. H. & R. T. (Eds.), AIP Conference Proceedings, American Institute of Physics, 3106, (1), 040014. https://doi.org/10.1063/5.0214803

Hoai, V. T. T., Son, P. N., An, D. T. T., & Anh, N. V. (2024). An investigation into whether applying augmented reality (ar) in teaching chemistry enhances chemical cognitive ability. International Journal of Learning, Teaching and Educational Research, 23(4), 195–216. https://doi.org/10.26803/ijlter.23.4.11

Jiang, G., Xia, X., Li, Y., Liang, H.-N., & Hui, P. (2024). ChemistryVR: Enhancing educational experiences through virtual chemistry lab simulations. In S. S.N. (Ed.), Proceedings - SIGGRAPH Asia 2024 Educator’s Forum, SA 2024. Association for Computing Machinery, Inc. 1(1), 1-5 https://doi.org/10.1145/3680533.3697068

Jiménez-Liso, M. R., López-Banet, L., & Dillon, J. (2020). Changing how we teach acid-base chemistry: A proposal grounded in studies of the history and nature of science education. Science and Education, 29(5), 1291–1315. https://doi.org/10.1007/s11191-020-00142-6

Johnson, M. D., Lavner, J. A., Mund, M., Zemp, M., Stanley, S. M., Neyer, F. J., Impett, E. A., Rhoades, G. K., Bodenmann, G., Weidmann, R., Bühler, J. L., Burriss, R. P., Wünsche, J., & Grob, A. (2022). Clinical psychology: Science and practice commentary. Personality and Social Psychology Bulletin, 48(4), 534–549. https://doi.org/10.1177/01461672211016920

Johnstone, A. H., Macdonald, J. J., & G Webb. (1977). Misconceptions in school thermodynamics. Physics Education, 12(4), 248. https://doi.org/10.1088/0031-9120/12/4/011

Julaeha, S., Hidayat, T., & Rustaman, N. Y. (2020). Development of web-based three tier multiple choice test to measure student’s tree thinking; Try out. Journal of Physics: Conference Series, 1521(4), 39-40. https://doi.org/10.1088/1742-6596/1521/4/042024

Kala, N., Yaman, F., & Ayas, A. (2013). The effectiveness of predict-observe-explain technique in probing students’ understanding about acid-base chemistry: A case for the concepts of ph, poh, and strength. International Journal of Science and Mathematics Education, 11(3), 555–574. https://doi.org/10.1007/s10763-012-9354-z

Kean, E., & Middlecamp, K. (1985). Panduan belajar kimia dasar. Erlangga.

Keiner, L., & Graulich, N. (2021). Beyond the beaker: Students’ use of a scaffold to connect observations with the particle level in the organic chemistry laboratory. Chemistry Education Research and Practice, 22(1), 146–163. https://doi.org/10.1039/D0RP00206B

Kounlaxay, K., Yao, D., Ha, M. W., & Kim, S. K. (2022). Design of virtual reality system for organic chemistry. Intelligent Automation and Soft Computing, 31(2), 1119–1130. https://doi.org/10.32604/iasc.2022.020151

Krajčovič, M., Gabajová, G., Matys, M., Grznár, P., Dulina, Ľ., & Kohár, R. (2021). 3D Interactive learning environment as a tool for knowledge transfer and retention. Sustainability (Switzerland), 13(14), 1–23. https://doi.org/10.3390/su13147916

Kurniawan, W., & Basuki, F. R. (2024). Ethnoscience learning: How do teacher implementing to increase scientific literacy in junior high school. International Journal of Evaluation and Research in Education (IJERE), 13, 1719. https://doi.org/10.11591/ijere.v13i3.26180

Liu, D., Bhagat, K., Yuan, G., Huang, R., & Chang, T. (2017). The potentials and trends of virtual reality in education. 105–130. https://doi.org/10.1007/978-981-10-5490-7_7

Makransky, G., & Lilleholt, L. (2018). A structural equation modeling investigation of the emotional value of immersive virtual reality in education. Educational Technology Research and Development, 66(5), 1141–1164. https://doi.org/10.1007/s11423-018-9581-2

Maksimenko, N., Okolzina, A., Vlasova, A., Tracey, C., & Kurushkin, M. (2021). Introducing atomic structure to first-year undergraduate chemistry students with an immersive virtual reality experience. Journal of Chemical Education, 98(6), 2104–2108. https://doi.org/10.1021/acs.jchemed.0c01441

Mubarak, S., & Yahdi. (2020). Identifying undergraduate students’ misconceptions in understanding acid base materials. Jurnal Pendidikan IPA Indonesia, 9(2), 276–286. https://doi.org/10.15294/jpii.v9i2.23193

Muyassaroh, I., Amiroh, A., Maryadi, M., & Masruroh, N. (2016). Integrasi kearifan lokal dalam kurikulum sains di sekolah dasar: Tinjauan literatur sistematis. Kalam Cendikia: Jurnal Ilmiah Kependidikan, 12, 1–23. https://doi.org/10.20961/jkc.v12i3.93360

Nahadi, N., Siswaningsih, W., Firman, H., Dewi, E. P., Lestari, T., & Rahmawati, T. (2023). Development and application of a two-tier acid-base misconception diagnostic test based on pictorial to identifying student misconceptions in chemistry. Journal of Engineering Science and Technology, 18(1), 207–223.

Nisa’, F. N., Widodo, W., Roqobih, & Dian, F. (2024). Pembelajaran inkuiri terbimbing untuk meningkatkan hasil belajar siswa pada materi pencemaran lingkungan. BIOCHEPHY: Journal of Science Education, 4(1), 330–336.

Osman, S. A., Razali, S. F. M., Shokri, S. N. S. M., Othman, A., Badaruzzaman, W. H. W., Taib, K. A., & Khoiry, M. A. (2016). Effectiveness of pre-Test in determining students’ achievement in department fundamental courses. Pertanika Journal of Social Sciences and Humanities, 24(1), 49–62.

Paristiowati, M., Zulmanelis, Z., & Nurhadi, M. F. (2019). Green chemistry-based experiments as the implementation of sustainable development values. JTK (Jurnal Tadris Kimiya), 4(1), 11–20. https://doi.org/10.15575/jtk.v4i1.3566

Rahayu, S. (2019). Socio-scientific Issues ( SSI ) in chemistry education : Enhancing both students ’ chemical literacy & transferable skills, 1227(1), 012008 https://doi.org/10.1088/1742-6596/1227/1/012008

Rashid, S., Khattak, A., Ashiq, M., Rehman, S. U., & Rasool, M. R. (2021). Educational landscape of virtual reality in higher education: Bibliometric evidences of publishing patterns and emerging trends. Publications, 9(2), 17. https://doi.org/10.3390/publications9020017

Reina, M., This, H., & Reina, A. (2022). Improving the understanding of chemistry by using the right words: A clear-cut strategy to avoid misconceptions when talking about elements, atoms, and molecules. Journal of Chemical Education, 99(8), 2999–3006. https://doi.org/10.1021/acs.jchemed.2c00411

Ristanto, R. H., Suryanda, A., & Indraswari, L. A. (2023). The development of ecosystem misconception diagnostic test. International Journal of Evaluation and Research in Education, 12(4), 2246–2259. https://doi.org/10.11591/ijere.v12i4.25200

Rodriguez, J.-M. G., Hunter, K. H., Scharlott, L. J., & Becker, N. (2020). A review of research on process oriented guided inquiry learning: Implications for research and practice. Journal of Chemical Education, 97(10), 3506–3520. https://doi.org/10.1021/acs.jchemed.0c00355

Romine, W. L., Todd, A. N., & Clark, T. B. (2016). How do undergraduate students conceptualize acid–base chemistry? measurement of a concept Progression. Science Education, 100(6), 1150–1183. https://doi.org/10.1002/sce.21240

Santos, V. C., & Arroio, A. (2016). The representational levels: Influences and contributions to research in chemical education. Journal of Turkish Science Education, 13(1), 3–18. https://doi.org/10.12973/tused.10153a

Shaafi, N. F., Yusof, M. M. M., Ellianawati, E., Subali, B., & Raji’e, M. H. H. (2025). Investigating misconceptions about acids and bases among pre-service science teachers. Journal of Education and Learning, 19(1), 460–477. https://doi.org/10.11591/edulearn.v19i1.21803

Sparks, B., Zidenberg, A. M., & Olver, M. E. (2022). Involuntary celibacy: A review of incel ideology and experiences with dating, rejection, and associated mental health and emotional sequelae. Current Psychiatry Reports, 24(12), 731–740. https://doi.org/10.1007/s11920-022-01382-9

Siswaningsih, W., & Chandratika, V. (2020). Profile of misconception in senior high school students on the concept of acid-base strength. Proceedings of the 7th Mathematics, Science, and Computer Science Education International Seminar, MSCEIS 2019. European Alliance for Innovation. https://doi.org/10.4108/eai.12-10-2019.2296380

Stieff, M. (2019). Improving learning outcomes in secondary chemistry with visualization-supported inquiry activities. Journal of Chemical Education, 96(7), 1300–1307. https://doi.org/10.1021/acs.jchemed.9b00205

Sudarmin, S., Pujiastuti, R. S. E., Asyhar, R., Tri Prasetya, A., Diliarosta, S., & Ariyatun, A. (2023). Chemistry project-based learning for secondary metabolite course with ethno-STEM approach to improve students’ conservation and entrepreneurial character in the 21st century. Journal of Technology and Science Education, 13(1), 393. https://doi.org/10.3926/jotse.1792

Sumarni, W., Sumarti, S. S., & Kadarwati, S. (2023). Blended inquiry learning with ethno-stem approach for first-semester students’ chemical literacy. Jurnal Pendidikan IPA Indonesia, 12(3), 439–450. https://doi.org/10.15294/jpii.v12i3.45879

Viehmann, C., Fernández Cárdenas, J. M., & Reynaga Peña, C. G. (2024). The use of socioscientific issues in science lessons: a scoping review. Sustainability (Switzerland), 16(14), 5827. https://doi.org/10.3390/su16145827

Vlah, D., Čok, V., & Urbas, U. (2021). Vr as a 3d modelling tool in engineering design applications. Applied Sciences (Switzerland), 11(16), 7570. https://doi.org/10.3390/app11167570

Widarti, H. R., Wiyarsi, A., Yamtinah, S., & Shidiq, A. S. (2025). Analysis of content development in chemical materials related to ethnoscience : A review. Journal of Education and Learning (EduLearn), 19(1), 422–430. https://doi.org/10.11591/edulearn.v19i1.21210

Wu, Q., Vanerum, M., Agten, A., Christiansen, A., Vandenabeele, F., Rigo, J. M., & Janssen, R. (2021). Certainty-based marking on multiple-choice items: Psychometrics meets decision theory. Psychometrika, 86(2), 518–543. https://doi.org/10.1007/s11336-021-09759-0

Yamtinah, S., Susanti VH, E., Saputro, S., Ariani, S. R. D., Shidiq, A. S., Sari, D. R., & Ilyasa, D. G. (2023). Augmented reality learning media based on tetrahedral chemical representation: How effective in learning process? Eurasia Journal of Mathematics, Science and Technology Education, 19(8), 2313. https://doi.org/10.29333/ejmste/13436

Yang, H. M., & Hwang, S. Y. (2016). Reliability and validity of the assessment tool for measuring communication skills in nursing simulation education. Korean Journal of Adult Nursing, 28(1), 95-96. https://doi.org/10.7475/kjan.2016.28.1.95

Zamudio, J. O., Miguel-Gómez, J. E., Santiago, A., Montaño-Hilario, J. M., Franco-Bodek, D., García-Ortega, H., Reina, A., & Reina, M. (2024). Chemical element lotto: A captivating guessing and cultural game inspired by the mexican lottery. Journal of Chemical Education, 101(11), 4820-4829. https://doi.org/10.1021/acs.jchemed.4c00759

Zidny, R., & Eilks, I. (2022). Learning about pesticide use adapted from ethnoscience as a contribution to green and sustainable chemistry education. Education sciences, 12(4), 227. https://doi.org/10.3390/educsci12040227

Zidny, R., & Sjöström, J. (2021). A multi-perspective reflection on how indigenous knowledge and related ideas can improve science education for sustainability. 29, 145–185. https://doi.org/10.1007/s11191-019-00100-x

Downloads

Published

2025-06-30

How to Cite

Content Validity of Three-Tier Multiple Choice Virtual Reality-Based Assessment with Embedded Ethno-SSI Concepts on Acid-Base Topics. (2025). Online Learning In Educational Research (OLER), 5(1), 173-188. https://doi.org/10.58524/oler.v5i1.665