Integrated Flood Risk and Embankment Stability Modeling in the Comoro River, Timor-Leste using HEC-RAS and GIS
DOI:
https://doi.org/10.58524/ijhes.v4i3.961Keywords:
flood risk assessment, hydraulic modeling, hec-ras, gis integration, urban watershed, river embankmentAbstract
Dili, the capital city of Timor-Leste, is increasingly vulnerable to flooding due to its geomorphological characteristics and rapid urban expansion. The Comoro River, the largest of several rivers traversing the city, has experienced multiple significant flood events in recent years most notably in March 2020, April 2021, and February 2022 resulting in severe damage to infrastructure and disruption to local communities. Urban development has led to watershed degradation, sediment accumulation, reduced channel capacity, and embankment overtopping, exacerbating flood risks in densely populated areas. This study aims to assess flood risk and evaluate embankment resilience using an integrated modeling approach. Design flood discharge was estimated using the Log Pearson Type III distribution and the Nakayasu synthetic unit hydrograph, with validation through Chi-Square and Kolmogorov-Smirnov goodness-of-fit tests. Hydraulic simulations were conducted using HEC-RAS 6.1.0 programme, while flood inundation mapping was performed with ArcGIS 10.3 to identify critical flood-prone zones and guide mitigation strategies. Results indicate a peak discharge of 192.141 m³/s for a 25-year return period flood. Mitigation measures proposed include embankment construction and river normalization at vulnerable cross-sections. HEC-RAS simulations demonstrate that these interventions significantly reduce flood inundation. The embankment slope stability factor was calculated at 7.55, indicating a high level of structural safety. The estimated cost for implementing these flood control measures is USD 571,366.87. This study provides a replicable framework for flood hazard modeling and infrastructure planning in urban river systems, contributing to climate-resilient development and evidence-based decision-making in Southeast Asian contexts.
References
Adji, T. N., & Bahtiar, I. Y. (2016). Rainfall–discharge relationship and karst flow components analysis for karst aquifer characterization in Petoyan Spring, Java, Indonesia. Environmental Earth Sciences, 75(9), 1–10. https://doi.org/10.1007/s12665-016-5553-1
Al-Ghozali, M. Q., Adji, T. N., Haryono, E., Cahyadi, A., Agniy, R. F., Laksono, G. E., Priambada, A. P., Rahmawati, A. I., Mahrizkhal, D. S., Setiawan, A., Fauzi, D. R., Astuti, E. S., Putra, R. D., & Biladi, M. (2021). Identification of Karst Underground River Catchment Areas with Artificial Tracer Tests and Water Balance in Banteng Cave Springs (Karst Gombong Selatan, Central Java). E3S Web of Conferences, 325, 1–6. https://doi.org/10.1051/e3sconf/202132508007
Ashok, V., & Umamahesh, R. N. V. (2019). Assessment of inundation risk in urban floods using HEC RAS 2D. Modeling Earth Systems and Environment, 5(4), 1839–1851. https://doi.org/10.1007/s40808-019-00641-8
Baba, M. El, Kayastha, P., Huysmans, M., & Smedt, F. De. (2020). Evaluation of the Groundwater Quality Using the Water Quality Index and Geostatistical Analysis in. Water (Switzerland), 12(262), 1–14. https://doi.org/10.3390/w12010262
Chatterjee, S., Mishra, P., Keesari, T., & Pant, H. J. (2023). Why is it imperative to use multicomponent geothermometry in medium/low enthalpy thermal waters? Insights from the Gujarat geothermal region, India. Environmental Earth Sciences, 82(23), 1–17. https://doi.org/10.1007/s12665-023-11241-2
Daffaedra, A. H., Mawandha, H. G., Ersavan, F., Setyawan, C., Kesuma, L. M., & Wijayanti, Y. (2023). Water availability identification of underground river in the Gunung Sewu karst area using inverse model. IOP Conference Series: Earth and Environmental Science, 1180(1), 0–10. https://doi.org/10.1088/1755-1315/1180/1/012020
Diani, R., Herliantari, H., Irwandani, I., Saregar, A., & Umam, R. (2019). Search, Solve, Create, and Share (SSCS) Learning Model: The Impact on the Students’ Creative Problem-Solving Ability on the Concept of Substance Pressure. Jurnal Penelitian Fisika Dan Aplikasinya (JPFA), 9(1), 65. https://doi.org/10.26740/jpfa.v9n1.p65-77
Estelaji, F., Zahedi, R., Gitifar, A., & Naseri, A. (2024). Integrating HEC-RAS, GIS, and LISREL for assessing and enhancing urban building resilience against flood threats: Comprehensive model and analysis. Heliyon, 10(20), e39463. https://doi.org/10.1016/j.heliyon.2024.e39463
Kapugu, E. R., Adnyano, A. A. I. A., Prastowo, R., Zamroni, A., Kaur, M., & Brahme, N. (2022). The Effectiveness of Sump Dimension Design: A Case Study in Nickel Mining. International Journal of Hydrological and Environmental for Sustainability, 1(1), 41–53. https://doi.org/10.58524/ijhes.v1i1.69
Khatooni, K., Hooshyaripor, F., & Malekmohammadi, B. (2025). A new approach for urban flood risk assessment using coupled SWMM–HEC-RAS-2D model. Journal of Environmental Management, 374, 123849. https://doi.org/10.1016/j.jenvman.2024.123849
Listyani, R. A. T.-, Prabowo, I. A., & De Jesus, A. A. (2023). Aquifer Potential Analysis Based On Hydrostratigraphy and Geological Lineament In Kokap Region, Kulon Progo, Yogyakarta, Indonesia. International Journal of Hydrological and Environmental for Sustainability, 2(2), 50–64. https://doi.org/10.58524/ijhes.v2i2.197
Mutri, M. A., Saputra, A. R. A., Alinursafa, I., Ahmed, A. N., Yafouz, A., & El-Shafie, A. (2024). Smart system for water quality monitoring utilizing long-range-based Internet of Things. Applied Water Science, 14(4). https://doi.org/10.1007/s13201-024-02128-z
Peker, B., Demir, V., Orhan, O., & Beden, N. (2024). Integration of HEC-RAS and HEC-HMS with GIS in Flood Modeling and Flood Hazard Mapping. Sustainability (Switzerland), 16(3), 1226. https://doi.org/10.3390/su16031226
Prastowo, R., Huda, S., Umam, R., Jermsittiparsert, K., Prasetiyo, A. E., Tortop, H. S., & Syazali, M. (2019). Academic Achievement and Conceptual Understanding of Electrodynamics: Applications Geoelectric Using Cooperative Learning Model. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 8(2), 165–175. https://doi.org/10.24042/jipfalbiruni.v0i0.4614
Purwanto, M. S., Susilo, A., Bahri, A. S., Naba, A., Sari, U. I., & Almais, A. T. W. (2024). Mapping Underground River Flows in Karst Areas with the VLF-EM Method (Case Study of the Krawak Region, Singgahan Tuban). IOP Conference Series: Earth and Environmental Science, 1307(1). https://doi.org/10.1088/1755-1315/1307/1/012005
Sabara, Z., Afiah, I. N., & Umam, R. (2022). Integration of Green Ergonomics in Robust Decision Making Approach in Water Resources Management in Makassar City. International Journal of Technology, 13(2), 264–273. https://doi.org/10.14716/ijtech.v13i2.5113
Stone, A., Inglis, R., Barfod, D., Ickert, R., Hughes, L., Waters, J., Jourdan, A. L., & Alsharekh, A. M. (2022). Hydroclimatic and geochemical palaeoenvironmental records within tufa: A cool-water fluvio-lacustrine tufa system in the Wadi Dabsa volcanic setting, western Saudi Arabia. Sedimentary Geology, 437, 106181. https://doi.org/10.1016/j.sedgeo.2022.106181
Sujitapan, C., Kendall, J. M., Chambers, J. E., & Yordkayhun, S. (2024). Landslide assessment through integrated geoelectrical and seismic methods: A case study in Thungsong site, southern Thailand. Heliyon, 10(2). https://doi.org/10.1016/j.heliyon.2024.e24660
Tabasi, N., Fereshtehpour, M., & Roghani, B. (2025). A review of flood risk assessment frameworks and the development of hierarchical structures for risk components. Discover Water. https://doi.org/10.1007/s43832-025-00193-2
Triani, Umam, R., & Sismanto. (2021). 3D Modeling of Subsurface Lawanopo Fault in Southeast Sulawesi, Indonesia Using Grablox and its Consequence to Geohazard. Indonesian Journal of Geography, 53(1), 67–77. https://doi.org/10.22146/IJG.50878
Umam, R., Cengiz, K., & Said, A. (2024). Application of Major and Trace Elements for Detecting the Origin of Groundwater: Lithium Enrichment in Ain Al-Harrah Hot Spring Influenced by Red Sea, Saudi Arabia. International Journal of Hydrological and Environmental for Sustainability, 3(3), 151–162. https://doi.org/10.58524/ijhes.v3i3.522
Umam, R., Junaidi, R., Syazali, M., Farid, F., Saregar, A., & Andiyan, A. (2025). Optimization of Piper Trilinier Diagram Using Lithium Isotope Systematics: An Application for Detecting the Contribution of Geothermal Water from Aso Caldera after Earthquake 2016 in Kumamoto Aquifer, Japan. Indonesian Journal of Science & Technology, 10(1), 159–170. https://doi.org/10.17509/ijost.v10i1.80974
Watlet, A., Van Camp, M., Francis, O., Poulain, A., Rochez, G., Hallet, V., Quinif, Y., & Kaufmann, O. (2020). Gravity Monitoring of Underground Flash Flood Events to Study Their Impact on Groundwater Recharge and the Distribution of Karst Voids. Water Resources Research, 56(4), 1–18. https://doi.org/10.1029/2019WR026673
Weihua, W., Zhijun, L., Jing, L., Yan, H., & Zengping, C. (2012). A Real-time Target Detection Algorithm for Panorama Infrared Search and Track System. Procedia Engineering, 29, 1201–1207. https://doi.org/10.1016/j.proeng.2012.01.113
Ziwei, L., Xiangling, T., Liju, L., Yanqi, C., Xingming, W., & Dishan, Y. (2023). GIS-based risk assessment of flood disaster in the Lijiang River Basin. Scientific Reports, 13, 6160. https://doi.org/10.1038/s41598-023-32829-5
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Kris Minaryo, Hanie Teki Tjendani, Esti Wulandari, Rahmad Junaidi, Andiyan Andiyan, Shreeniwas Omanwar

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
