Fast Building Identification Using Fuzzy Soft Set Based on Rapid Visual Building (RVS)

Sely Novita Sari , Rizqi Prastowo , Iwan Tri Riyadi Yanto , Korhan Cengiz , Basak Ozyurt , Tuna Topac

Abstract


Building damage can be caused by disasters such as earthquakes, landslides, etc. To minimize the fatality, the identification of buildings is needed to know the condition of buildings and whether the construction of buildings is able to endure if the disasters happen. This research uses the Rapid Visual Building (RVS) method to identify the building condition. The data are collected from  Kalirejo, Kulon Progo. The survey is conducted by taking a simple building evaluation form (typical of the walls ) based on RVS data. The field assessment results are distinguished into several factors that affect the condition of typical building walls: the foundations, structures, walls, and roofs of the 11 categories on the assessment form. From the data obtained, it is used to classify the building condition using Fuzzy Soft Set. The results show that the classification has been made with good performance in terms of accuracy, precision and time response. The accuracy and recall are close to 100% with above 50% of prevision average and time response is quite 0.0051 second. Thus, it can be used to  predict the condition of buildings accurately.


Keywords


Identification; Building; Landslide; Fuzzy set; Classification

Full Text:

PDF

References


Handaga, B., Herawan, T, and Deris, M. M. (2012). FSSC: an algorithm for classifying numerical data using fuzzy soft set theory. International Journal of Fuzzy System Applications (IJFSA), 2(4), 29–46, 201.

Basöz, N. I., Kiremidjian, A. S., King, S. A., & Law, K. H. (1999). Statistical analysis of bridge damage data from the 1994 Northridge, CA, earthquake. Earthquake Spectra, 15(1), 25–54.

Bawoleh, M., Mandela, W., & Rusdi, A. (2019). Evaluasi Mitigasi Struktur Bencana Gempa Bumi Di Wilayah Pulau Doom Kota Sorong. Jurnal Teknik Sipil : Rancang Bangun, 2(2), 37. https://doi.org/10.33506/rb.v2i2.482

Bektas, N. and Brassai, O, K. (2022). Conventional RVS Methods for Seismic Risk Assessment for Estimating the Current Situation of Existing Buildings: A State-of-the-Art Review. Sustainability 2022(14), 2583. https://doi.org/10.3390/su14052583

Bintarto, P. (2007). Sistem Pendukung Keputusan Alternatif Pemeliharaan Gedung Sekolah. Sekolah Pasca Sarjana Universitas Gadjah Mada, Yogyakarta.

Boen, T., Suprobo, P., Sarwidi, Pribadi, K.S., I., & M., Satyarno, I., Saputra, A. (2009). Key Requirement of Safer Houses. Department of Public Work Indonesia and JICA Japan.

Coccia, S., Gaudio, V. Del, Venisti, N., & Wasowski, J. (2010). Application of Refraction Microtremor (ReMi ) technique for determination of 1-D shear wave velocity in a landslide area. Journal of Applied Geophysics, 71(2–3), 71–89. https://doi.org/10.1016/j.jappgeo.2010.05.001

Cousineau, L., & Miura, N. (1998). Construction robots: the search for new building technology in Japan. ASCE Publications

Demartinos, K., & Dritsos, S. (2006). First-level pre-earthquake assessment of buildings using fuzzy logic. Earthquake Spectra, 22(4), 865–885. https://doi.org/10.1193/1.2358176

Harirchian, E., Lahmer, T., Kumari, V., and Jadhav, K. (2020). Application of Support Vector Machine Modeling for the Rapid Seismic Hazard Safety Evaluation of Existing Buildings. Energies 2020(13), 3340. https://doi.org/10.3390/en13133340

Karnawati, D. (2005). Bencana Alam Gerakan Massa Tanah di Indonesia dan Upaya Penanggulangannya. In Jurusan Teknik Geologi.

Kumari, V., Harirchian, E., Lahmer, T. and Rasulzade, S. (2022).Evaluation of Machine Learning and Web-Based Process for Damage Score Estimation of Existing Buildings. Buildings, 2022(12), 578. https://doi.org/10.3390/buildings12050578

Mushrif, M, M., Sengupta, S. and Ray, A, K. (2006). Texture classification using a novel, soft-set theory based classification algorithm. Asian Conference on Computer Vision, 1462(1), 246–254.

Nasharuddin, S. and. (2018). Landslide Potential Mapping In Penggung Purwosari Village , District Girimulyo , Kulonprogo , Yogyakarta Province, Indonesia Using Dipole- Dipole Resistivity Method. Int. J. Civ. Eng. Technol, 9(6), 1141–1150.

Ningthoujam, M. C., & Nanda, R. P. (2018). Rapid visual screening procedure of existing building based on statistical analysis. International Journal of Disaster Risk Reduction, 28(10), 720–730. https://doi.org/10.1016/j.ijdrr.2018.01.033

Palupi, E, K., Umam, R., Junaidi, R., Perkasa, Y, S., and Sanjaya, M, W, S. (2021). Determining the arm's motion angle using inverse kinematics models and adaptive neuro-fuzzy interface system. International Journal of Electronics and Communications Systems, 1(1), 1-9. https://doi.org/10.24042/ijecs.v1i1.9238

Piegari, E., Cataudella, V., Maio, R. Di, Milano, L., Nicodemi, M., & Soldovieri, M. G. (2009). Electrical resistivity tomography and statistical analysis in landslide modelling : A conceptual approach. Journal of Applied Geophysics, 68(2), 151–158. https://doi.org/10.1016/j.jappgeo.2008.10.014

Prastowo, R., Trianda, O., & Novitasari, S. (2018). Identifikasi Kerentanan Gerakan Tanah Berdasarkan Data Geologi Daerah Kalirejo, Kecamatan Kokap, Kabupaten Kulonprogo, Yogyakarta. Kurvatek, 3(2), 31–40. https://doi.org/10.33579/krvtk.v3i2.782

Sari, S. N., Prastowo, R., Junaidi, R., & Machmud, A. (2020). Rapid Visual Screening of Building for Potential Ground Movement in Kalirejo, Kulonprogo, Yogyakarta. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 9(1), 51-59.

Satyarno, I. (2011). Vulnerability of Indonesian Community Houses to Earthquake Disaster. Proceedings of the 9th International Symposium on Mitigation of Geo-Disasters in Asia.

Uhlemann, S., Wilkinson, P. B., Chambers, J. E., Maurer, H., Merritt, A. J., Gunn, D. A., & Meldrum, P. I. (2015). Interpolation of landslide movements to improve the accuracy of 4D geoelectrical monitoring. Journal of Applied Geophysics, 121, 93–105. https://doi.org/10.1016/j.jappgeo.2015.07.003

Zedadra, O., Guerrieri, A., Jouandeau, N., Seridi, H., Fortino, G., Spezzano, G., ... & Raj Pokharel, J. (2019). The Commissioner of Law. Freni, G., La Loggia, G., Notaro, V., McGuire, TJ, Sjoquist, DL, Longley, P., Batty, M., Chin, N., McNulty, J., TVERSK, KAA,… Thesis, A, 1-14.




DOI: https://doi.org/10.58524/ijhes.v1i2.87

Refbacks

  • There are currently no refbacks.


 

Creative Commons License

International Journal of Hydrological and Environmental for Sustainability is licensed under a Creative Commons Attribution-ShareAlike 4.0 International LicensePublished by Foundation of Advanced Education (FoundAE). ISSN Numbers : p-ISSN 2828-6405 | e-ISSN 2828-5050