Assessing Anthropogenic Pressure through Biomonitoring: Aquatic Biota as Indicators of Water Quality in an Urban Lake
DOI:
https://doi.org/10.58524/ijhes.v4i3.846Keywords:
biomonitoring, aquatic bioindicators, urban lake pollution, anthropogenic pressure, water quality assessmentAbstract
Urban areas in Jakarta face significant pressure on clean water resources due to increasing population and anthropogenic activities. This research aims to conduct biomonitoring of the Situ Bambon Ciracas lake ecosystem, East Jakarta, by analyzing water quality and the community structure of macrozoobenthos, phytoplankton, and zooplankton as bioindicators. A descriptive quantitative method was used, involving measurements of water physical-chemical parameters (TDS, TSS, pH, BOD, COD, Total-P) and identification of aquatic biota. The results indicate that the water quality of Situ Bambon Ciracas lake is lightly to moderately polluted, dominated by organic compounds. BOD (5−34.67 mg/L) and COD (17.05−193.56 mg/L) values consistently exceeded the Class 3 water quality standards, and TDS showed an increasing trend. The biota community structure reflects these conditions: macrozoobenthos showed moderate diversity (H′=1.2, E=0.6). Phytoplankton (H′=3.12−3.2, E=0.74−0.76) and zooplankton (H′=2.11−2.16, E=0.76−1.95) showed high diversity and evenness, but were dominated by bioindicator species tolerant to organic pollution (e.g., Oscillatoria sp., Nitzschia sp., Colpoda sp., Closterium sp.). The positive correlation between the abundance of these bioindicator species and high BOD and COD confirms organic waste as the main driver of ecological change. In conclusion, the Situ Bambon Ciracas lake ecosystem is under significant anthropogenic pressure. The dominance of pollution-tolerant species, despite existing diversity, highlights the urgency of comprehensive management and restoration efforts to maintain the sustainability of this urban lake.
References
Al-Ghamdi, A. Y., Saraya, M. E. S. I., Al-Ghamdi, A. O., & Zabin, S. A. (2014). Study of physico-chemical properties of the surface and ground water. American Journal of Environmental Sciences, 10(3), 219–235. https://doi.org/10.3844/ajessp.2014.219.235
Al-Khashman, O. A., Alnawafleh, H. M., Jrai, A. M. A., & Al-Muhtaseb, A. H. (2017). Monitoring and Assessing of Spring Water Quality in Southwestern Basin of Jordan. Open Journal of Modern Hydrology, 07(04), 331–349. https://doi.org/10.4236/ojmh.2017.74019
Alao, J. O., Lawal, K. M., Dewu, B. B. M., & Raimi, J. (2024). The effectiveness of very low-frequency electromagnetics (VLF-EM) method in detecting buried targets at a controlled site. Discover Applied Sciences, 6(1). https://doi.org/10.1007/s42452-024-05650-6
Blanchette, D., Lefebvre, R., Nastev, M., & Cloutier, V. (2010). Groundwater quality, geochemical processes and groundwater evolution in the Chateauguay River watershed, Quebec, Canada. Canadian Water Resources Journal, 35(4), 503–526. https://doi.org/10.4296/cwrj3504503
Bodrud-Doza, M., Islam, A. R. M. T., Ahmed, F., Das, S., Saha, N., & Rahman, M. S. (2016). Characterization of groundwater quality using water evaluation indices, multivariate statistics and geostatistics in central Bangladesh. Water Science, 30(1), 19–40. https://doi.org/10.1016/j.wsj.2016.05.001
Calligaris, C., Mezga, K., Slejko, F. F., Urbanc, J., & Zini, L. (2018). Groundwater characterization by means of conservative (δ¹⁸O and δ²H) and non-conservative (⁸⁷Sr/⁸⁶Sr) isotopic values: The classical karst region aquifer case (Italy–Slovenia). Geosciences (Switzerland), 8(9), 1–25. https://doi.org/10.3390/geosciences8090321
Chen, F., Lee, C., Chen, Y., Lin, Y., Yeh, C., Lin, C., & Cheng, H. (2025). Pathophysiology and blood pressure measurements of hypertension in the elderly. Journal of the Formosan Medical Association, 124(S1), S10–S16. https://doi.org/10.1016/j.jfma.2025.03.027
Duan, Y., Danen, R. E., Yan, X., Steiner, R., Cuadrado, J., Wayne, D., Majidi, V., & Olivares, J. A. (1999). Characterization of an improved thermal ionization cavity source for mass spectrometry. Journal of the American Society for Mass Spectrometry, 10(10), 1008–1015. https://doi.org/10.1016/S1044-0305(99)00065-3
Haerudin, N., Fitriawan, H., Siska, D., & Farid, M. (2019). Earthquake disaster mitigation mapping by modeling of land layer and site effect zone. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 08(1), 53–67. https://doi.org/10.24042/jipfalbiruni.v8i1.3705
Huang, F., & Korai, S. K. (2025). B-Li-Cl trend line can distinguish the dominance of hydrothermal water and surface water: A case study of geothermal in Tengchong, Southwestern China. International Journal of Hydrological and Environmental for Sustainability, 4(1), 42–54. https://doi.org/10.58524/ijhes.v4i1.636
Ibrahim, M. N. (2019). Assessing groundwater quality for drinking purpose in Jordan: Application of water quality index. Journal of Ecological Engineering, 20(3), 101–111. https://doi.org/10.12911/22998993/99740
Jalili, M., Hosseini, M. S., Ehrampoush, M. H., Sarlak, M., Abbasi, F., & Fallahzadeh, R. A. (2019). Use of Water Quality Index and spatial analysis to assess groundwater quality for drinking purpose in Ardakan, Iran. Journal of Environmental Health and Sustainable Development, 4(3), 834–842. https://doi.org/10.18502/jehsd.v4i3.1500
Jan, F., Min-Allah, N., & Düştegör, D. (2021). IoT-based smart water quality monitoring: Recent techniques, trends and challenges for domestic applications. Water (Switzerland), 13(13), 1–37. https://doi.org/10.3390/w13131729
Jha, M. K., Shekhar, A., & Jenifer, M. A. (2020). Assessing groundwater quality for drinking water supply using hybrid fuzzy-GIS-based water quality index. Water Research, 179, 115867. https://doi.org/10.1016/j.watres.2020.115867
Luo, W., Gao, X., & Zhang, X. (2018). Geochemical processes controlling the groundwater chemistry and fluoride contamination in the Yuncheng Basin, China—an area with complex hydrogeochemical conditions. PLOS ONE, 13(7), 1–25. https://doi.org/10.1371/journal.pone.0199082
Mousavi Mashhadi, S. K., Yadollahi, H., & Marvian Mashhad, A. (2016). Design and manufacture of TDS measurement and control system for water purification in reverse osmosis by PID fuzzy logic controller with temperature compensation. Turkish Journal of Electrical Engineering and Computer Sciences, 24(4), 2589–2608. https://doi.org/10.3906/elk-1402-65
Mulyasari, R., Utama, H. W., & Haerudin, N. (2019). Geomorphology study on the Bandar Lampung Capital City for recommendation of development area. IOP Conference Series: Earth and Environmental Science, 279(1). https://doi.org/10.1088/1755-1315/279/1/012026
Mutri, M. A., Saputra, A. R. A., Alinursafa, I., Ahmed, A. N., Yafouz, A., & El-Shafie, A. (2024). Smart system for water quality monitoring utilizing long-range-based Internet of Things. Applied Water Science, 14(4). https://doi.org/10.1007/s13201-024-02128-z
Nayanathara Thathsarani Pilapitiya, P. G. C., & Ratnayake, A. S. (2024). The world of plastic waste: A review. Cleaner Materials, 11, 100220. https://doi.org/10.1016/j.clema.2024.100220
Nigro, A., Sappa, G., & Barbieri, M. (2017). Strontium isotope as tracers of groundwater contamination. Procedia Earth and Planetary Science, 17, 352–355. https://doi.org/10.1016/j.proeps.2016.12.089
Pasika, S., & Gandla, S. T. (2020). Smart water quality monitoring system with cost-effective using IoT. Heliyon, 6(7), e04096. https://doi.org/10.1016/j.heliyon.2020.e04096
Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P., & Portmann, F. T. (2010). Groundwater use for irrigation—A global inventory. Hydrology and Earth System Sciences, 14(10), 1863–1880. https://doi.org/10.5194/hess-14-1863-2010
Sugianti, E. P., & Hafiludin, H. (2022). Manajemen kualitas air pada pembenihan ikan lele mutiara (Clarias gariepinus) di Balai Benih Ikan (BBI) Pamekasan. Juvenil: Jurnal Ilmiah Kelautan dan Perikanan, 3(2), 32–36. https://doi.org/10.21107/juvenil.v3i2.15813
Umar, E. P., Nawir, A., Husain, J. R., Tamar, K. R., . M., . J., & Wakila, M. H. (2020). Analisis fluida dan pemanfaatan mata air panas daerah Sulili Kabupaten Pinrang Provinsi Sulawesi Selatan. Jurnal Geosaintek, 6(3), 161. https://doi.org/10.12962/j25023659.v6i3.8108
Whiteley, J. S., Watlet, A., Uhlemann, S., Wilkinson, P., Boyd, J. P., Jordan, C., Kendall, J. M., & Chambers, J. E. (2021). Rapid characterisation of landslide heterogeneity using unsupervised classification of electrical resistivity and seismic refraction surveys. Engineering Geology, 290, 106189. https://doi.org/10.1016/j.enggeo.2021.106189
Xia, T., Huisman, J. A., Chao, C., Li, J., & Mao, D. (2025). Induced polarization monitoring of in-situ chemical oxidation for quantification of contaminant consumption. Journal of Contaminant Hydrology, 269, 104481. https://doi.org/10.1016/j.jconhyd.2024.104481
Yu, L., Rozemeijer, J., Van Breukelen, B. M., Ouboter, M., Van Der Vlugt, C., & Broers, H. P. (2018). Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: Monitoring the greater Amsterdam area. Hydrology and Earth System Sciences, 22(1), 487–508. https://doi.org/10.5194/hess-22-487-2018
Zhao, H., Zhang, J., Chen, H., Wang, L., & Yang, Z. (2020). Localization of groundwater contaminant sources using artificially enhanced catchment. Water (Switzerland), 12(7). https://doi.org/10.3390/w12071949
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Foundae (Foundation of Advanced Education)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
