Sustainable Bioethanol Production from Carica (Carica pubescens) Peel Waste: Optimization of Acid Hydrolysis and Fermentation Time

Authors

  • Sofana Ubaidilah Department of Mechanical Engineering, Universitas Sains Al-Qur’an
  • Akhmad Irfan Department of Mechanical Engineering, Universitas Sains Al-Qur’an http://orcid.org/0000-0002-4728-3541
  • Sunaryo Sunaryo Department of Mechanical Engineering, Universitas Sains Al-Qur’an
  • Keodouangdy Yongthong Faculty of Life and Environmental Sciences, University of Tsukuba
  • Rizky Mulya Sampurno Faculty of Life and Environmental Sciences, University of Tsukuba http://orcid.org/0000-0002-9412-5247
  • Berwyn Dzaky Radhitya Faculty of Life and Environmental Sciences, University of Tsukuba

DOI:

https://doi.org/10.58524/ijhes.v4i2.771

Keywords:

bioethanol, carica pubescens, fermentation, hydrolysis, biomass waste, optimization

Abstract

The global energy crisis and continued reliance on fossil fuels have intensified the search for sustainable alternative energy sources, particularly biomass-derived biofuels. One promising yet underutilized resource is the peel waste of Carica pubescens, a papaya variety indigenous to the Dieng Plateau. This study investigates the potential of Carica peel waste as a bioethanol feedstock through sulfuric acid (H₂SO₄) hydrolysis and fermentation using Saccharomyces cerevisiae. To optimize sugar yield, the concentration of H₂SO₄ was varied between 0.1 M and 0.8 M, while fermentation durations were set at 96, 120, 144, and 168 hours. Results indicated that hydrolysis with 0.8 M H₂SO₄ produced the highest sugar concentration (6.8%). The most effective fermentation period was 120 hours, yielding 64% bioethanol with a density of 0.8679 g/mL, a calorific value of 4,831 kcal/kg, a flame height of 14.6 cm, and a combustion temperature of 438°C. These findings demonstrate the viability of Carica peel waste as a valuable raw material for bioethanol production. Its high efficiency and favorable fuel properties highlight its potential for integration into local renewable energy initiatives, contributing to sustainable energy development. Further studies on large-scale implementation and process optimization are recommended to maximize its industrial application.

References

Abdulla, R., Derman, E., Ravintaran, P. T., & Jambo, S. A. (2018). Fuel ethanol production from papaya waste using immobilized Saccharomyces cerevisiae. ASM Science Journal, 11(Special Issue 2), 112–123.

Aksari, S. A. (2024). Perbandingan konsentrasi asam pekat (H2SO4 ) dalam proses hidrolisis terhadap kadar gula pereduksi kulit kakao sebagai substrat dalam pembuatan bioetanol. 2(1), 7–13.

Amanullah, A., & Kapilan, R. (2021). Utilization of bioethanol generated from papaw peel waste for hand sanitizer production. International Journal of Multidisciplinary Studies, 8(3), 101. https://doi.org/10.4038/ijms.v8i3.152

Amarasinghe, A., Wijesekara, E., & Hathurusinghe, H. (2024). Analysis of Ethanol Production Potential from Different Types of Fruit Waste. IX(7), 275–284. https://doi.org/https://doi.org/10.51584/IJRIAS.2024.907026

Bender, L. E., Lopes, S. T., Gomes, K. S., Devos, R. J. B., & Colla, L. M. (2022). Challenges in bioethanol production from food residues. Bioresource Technology Reports, 19, 101171. https://doi.org/https://doi.org/10.1016/j.biteb.2022.101171

Hakkarainen, T., Korhonen, T., & Vaari, J. (2017). Heat release characteristics of ethanol-water mixtures: Small-scale experiments. Fire Safety Journal, 91, 174–181. https://doi.org/https://doi.org/10.1016/j.firesaf.2017.03.071

Hargono, H., Zakaria, A., & Salim, C. (2024). Ethanol Purification through Distillation Method: Effect of Height and Packing Types on Ethanol Concentration. International Journal of Innovative Science and Research Technology (IJISRT), 2218–2221. https://doi.org/10.38124/ijisrt/IJISRT24AUG1566

Julian, R., Rohman, F., Lutfillah, Z. M., & Marsela, A. (2024). Pengaruh Konsentrasi Larutan HCl dan H2SO4 Terhadap Produksi Gula Pereduksi Dalam Proses Hidrolisis Enceng Gondok dengan Menggunakan Instrumen Ultrasonik. November.

Khairiah, H., & Ridwan, M. (2021). Pengembangan Proses Pembuatan Bioetanol Generasi Ii Dari Limbah Tandan Kosong Kelapa Sawit. Jurnal Pangan Dan Agroindustri, 9(4), 233–240. https://doi.org/10.21776/ub.jpa.2021.009.04.5

Kiswanto, C. M. J., & Rubianto, L. (2023). Pengaruh Waktu Fermentasi Dan Konsentrasi H2So4 Terhadap Kadar Glukosa Pada Pembuatan Bioetanol Dari Tongkol Jagung. DISTILAT: Jurnal Teknologi Separasi, 8(4), 765–770. https://doi.org/10.33795/distilat.v8i4.452

Mulyadi, D., Mulyani, R., & Hidayah, L. (2023). Pengaruh Konsentrasi Ragi (Saccharomyces cerevisiae) pada Proses Fermentasi Limbah Kulit Buah Sukun (Artocarpus altilis) dalam Pembuatan Bioetanol. Jurnal Energi Baru Dan Terbarukan, 4(3), 154–161. https://doi.org/10.14710/jebt.2023.17708

Numberi, J. J. (2022). Analisis Limbah Ampas Sagu Sebagai Sumber Bahan Bakar Bioetanol. G-Tech: Jurnal Teknologi Terapan, 6(1), 98–103. https://doi.org/10.33379/gtech.v6i1.2603

Parinduri, L., & Parinduri, T. (2020). Konversi Biomassa Sebagai Sumber Energi Terbarukan. Journal of Electrical Technology, 5(2), 88–92. https://www.dosenpendidikan.

Putra, V. A. P., & Sanjaya, I. G. M. (2020). Pengaruh Waktu Sakarifikasi dan Fermentasi pada Produksi Bioetanol dari Rumput Alang-Alang (Imperata Cylindrica) Menggunakan Metode SSF (Simultaneous Saccharification and Fermentation). UNESA Journal of Chemistry, 9(2).

Putri, Z. S., Ruyani, A., Uliyandari, M., Wardana, R. W., & Sukarso, A. A. (2024). Pengaruh Penambahan Nutrient (NPK dan Pupuk Urea) terhadap Bioethanol Hasil Fermentasi Biji Alpukat (Persea americana Mill.). Bioscientist : Jurnal Ilmiah Biologi, 12(1), 662. https://doi.org/10.33394/bioscientist.v12i1.11283

Peraturan Pemerintah Republik Indonesia No.79 Tahun 2014 Tentang Kebijakan Energi Nasional, Hukum Online 1 (2014).

Rizaldi, L. H., Mikratunnisa, Rinjani, F. U., & Amrullah, S. (2022). The effect of fermentation time on bioethanol levels from sugar cane (saccharum officinarum). Jurnal Agrotek Ummat, 9(3), 182. https://doi.org/10.31764/jau.v9i3.8106

Setyono, A. E., & Kiono, B. F. T. (2021). Dari Energi Fosil Menuju Energi Terbarukan: Potret Kondisi Minyak dan Gas Bumi Indonesia Tahun 2020 – 2050. Jurnal Energi Baru Dan Terbarukan, 2(3), 154–162. https://doi.org/10.14710/jebt.2021.11157

Siagian, A. W., Daffa Alghazali, M. S., & Alify, R. F. (2023). Menuju Transisi Energi 2050: Quo Vadis Energi Baru dan Terbarukan. Jurnal Hukum Lingkungan Indonesia, 9(1), 187–202. https://doi.org/10.38011/jhli.v9i1.471

Sindunatha, S., & Muhaji. (2019). Karakteristik Nyala Api Dari Bioetanol Buah Tomat(Solanum Lycopersicum).

Tan, C. M., & Oh, P. C. (2023). Optimization of bioethanol production from papaya waste through fermentation using response surface methodology (RSM). Materials Research Proceedings, 29, 72–80. https://doi.org/10.21741/9781644902516-10

Wulandari, P. A., Fatimura, M., & ... (2023). Pengaruh Konsentrasi H2SO4 Dan Waktu Fermentasi Terhadap Proses Pembuatan Bioetanol Berbahan Eceng Gondok (Eichhornia Crassipes). Jurnal Teknologi Dan …, 04(02), 9–15. http://jtii.eng.unila.ac.id/index.php/ojs/article/view/75

Wulandari, P. F., Ma’rifah, Z. D., Sani, S., & Astuti, D. H. (2023). Pembuatan Bioetanol dari Limbah Batang Tembakau Menggunakan Proses Simultaneous Saccharification and Fermentation (SSF). Rekayasa Bahan Alam Dan Energi Berkelanjutan, 7(2), 1–7. https://doi.org/10.21776/ub.rbaet.2023.007.02.01

Yumas, & Rosniati. (2014). Pengaruh konsentrasi starter dan lama fermentasi pulp kakao terhadap konsentrasi etanol. Biopropal Industri, 5(1), 13–22.

Downloads

Published

2025-06-04

How to Cite

Ubaidilah, S., Irfan, A., Sunaryo, S., Yongthong, K., Sampurno, R. M., & Radhitya, B. D. (2025). Sustainable Bioethanol Production from Carica (Carica pubescens) Peel Waste: Optimization of Acid Hydrolysis and Fermentation Time. International Journal of Hydrological and Environmental for Sustainability, 4(2), 55-62. https://doi.org/10.58524/ijhes.v4i2.771