Thermal Comfort and Airflow in Air-Conditioned Systems: Insights from Computational Fluid Dynamic Simulations
DOI:
https://doi.org/10.58524/ijhes.v4i2.768Keywords:
Airflow Air Temperature Air Velocity Computational Fluid Dynamic (CFD)Abstract
Air conditioning (AC) systems are vital for ensuring thermal comfort in enclosed spaces, particularly in tropical regions like Indonesia, where high temperatures and humidity can challenge human productivity and well-being. This study investigates airflow distribution patterns in air-conditioned rooms using computational fluid dynamics (CFD) simulations, specifically employing the SST k-ω turbulence model. Simulations were conducted in a 3.5 × 3.55 × 3 m closed room with varied inlet temperatures (289.15–297.15 K) and airflow velocities (2–4 m/s). Results indicate that for every 2 K increase in inlet temperature, the average room temperature rises by approximately 1.37 K. Additionally, a 0.5 m/s increment in airflow velocity leads to an average temperature increase of 0.16 K. The airflow was observed to form a dominant jet stream from the AC inlet, flowing diagonally toward the lower part of the room, creating a low-altitude recirculation zone. This phenomenon influences thermal mixing and occupant comfort significantly. Validation of the CFD model revealed its robustness, with an average temperature deviation of 328.15 K and an Nash-Sutcliffe Efficiency (NSE) score of 0.858. Furthermore, the study suggests optimizing AC placement and operation parameters to enhance energy efficiency while maintaining comfort. These findings provide actionable insights into airflow behavior in tropical environments, promoting better design practices for cooling systems, which are crucial for sustainable development and improved living conditions in tropical climates.
References
Çengel, Y. A., & Cimbala, J. M. (2014). Fluid mechanics: Fundamentals and applications (3rd ed.). McGraw-Hill Education.
Chandra, J. P., Putra, P., & Firdianto, A. (2020). Pola aliran udara dan distribusi temperatur diinduksi oleh sistem air conditioning. Jurnal Teknik Mesin, 9(2), 137–144.
Ichsan, D. K. (2023). Analisis pengaruh bilangan Reynold terhadap efisiensi kondensor heat exchanger menggunakan simulasi CFD. Journal of Applied Science (JAPPS), 4(2), 12–19.
Jalaluddin, J., Akmal, S., ZA, N., & Ibrahim, I. (2020). Analisa laju korosi baja karbon ST-37 dalam larutan asam sulfat dengan penambahan inhibitor ekstrak daun tembakau. Jurnal Teknologi Kimia Unimal, 8(2), 53–60.
Anderson, J. D., Jr. (1995). Computational fluid dynamics: The basics with applications. McGraw-Hill.
Juarmito, M., & Handiko, Y. D. (2023). Analisis flow simulation air conditioner duct pada konstruksi sleeper bus chassis Mercedes Benz OH 1836. Jurnal Inovasi Mesin, 5(2), 25–32.
Liawan, J. P., Tanujaya, H., & Darmawan, S. (2023). Analisis aliran udara dan kenyamanan termal di laboratorium perpindahan panas dan massa menggunakan metode Computational Fluid Dynamics (CFD). Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi, 5(1), 123–134.
Santosa, M., & Noerwasito, V. T. (2006). Pengaruh “thermal properties” material bata merah dan batako sebagai dinding, terhadap efisiensi energi dalam ruang di Surabaya. Jurnal Teknik Arsitektur, 34(2), 147–153.
Mishbahuddin, M. H., Saputra, T. W., & Wijayanto, D. S. (2024). Pola aliran udara pada turbin angin Savonius heliks dengan variasi jumlah sudu menggunakan metode CFD. Jurnal Kinematika, 9(2), 141–152.
Pebralia, J., Amri, I., & Rifa’i, A. I. (2022). Measuring convective heat transfer in a room equipped with an air conditioner. Physics Education, 57(5), 055032.
Pebralia, J., Fendriani, Y., Afrianto, M. F., & Syaqila, C. N. (2024). Rancang bangun sistem pengukuran intensitas cahaya, suhu, dan kelembaban ruangan berbasis sensor DHT11 dan BH1750. Journal Online of Physics (JOP), 10(1), 37–42.
Putu, Y. N. N., & Pebralia, J. (2015). Studi penerapan sensor MLX90614 sebagai pengukur suhu tinggi secara non-kontak berbasis Arduino dan Labview. Prosiding Simposium Nasional Inovasi dan Pembelajaran Sains, 89–92.
Ratnasari, A., & Asharhani, I. S. (2021). Aspek kualitas udara, kenyamanan termal dan ventilasi sebagai acuan adaptasi hunian pada masa pandemi. Arsir, 24, 1–11.
Sahri, M., & Hutapea, O. (2019). Analysis and evaluation of office indoor air quality in Surabaya City. Journal of Industrial Hygiene and Occupational Health, 4(1), 1–8.
Sari, N. L., & Hasanuddin, T. (2020). Analisis performa metode moving average model untuk prediksi jumlah penderita COVID-19. Indonesian Journal of Data and Science, 1(3), 87–95.
Seputra, J. A. P. (2018). Studi distribusi udara pada ruang ber-AC untuk mencapai tingkat efisiensi energi yang optimal. ARTEKS: Jurnal Teknik Arsitektur, 3(1), 45–52.
Wilani, L., & Peslinof, M. (2023). Rancang bangun sistem monitoring kebisingan pada ruangan dengan sensor suara GY-MAX4466 berbasis Internet of Things (IoT). STRING (Satuan Tulisan Riset dan Inovasi Teknologi), 8(1), 1–8.
Yao, J., Zhong, J., & Yang, N. (2022). Indoor air quality test and air distribution CFD simulation in hospital consulting room. International Journal of Low-Carbon Technologies, 17(11), 33–37.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Foundae (Foundation of Advanced Education)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
