Geochemical and Mineralogical Insights into Hydrothermal Alteration in the Beruang Kanan Non-Vulcanic Area, Central Kalimantan, Indonesia
DOI:
https://doi.org/10.58524/ijhes.v4i2.767Keywords:
hydrothermal, rocks, sandstone, alteration, sericitic, propyliticAbstract
Previous studies have revealed significant hydrothermal alterations within the Beruang Kanan Non-Volcanic Area, Central Kalimantan, Indonesia, resulting in extensive ore mineralizations. This study aims to examine the effects of hydrothermal processes on rock alteration, delineate alteration zones, and establish their relationship to metal mineralization. The research area, situated in the Tumbang Miri district of Gunung Mas regency, forms part of the Corrugated Hills Geomorphological Unit and is traversed by the Schwaner Mountains, with elevations ranging from approximately 50 to 400 meters. Stratigraphic analysis identifies three primary rock units, ordered from oldest to youngest: the Tuffaceous Sandstone Unit, the Dacitic Tuff Unit, and the Andesite Unit. Hydrothermal alterations have resulted in three distinct alteration zones sericitic, argillic, and propylitic characterized by secondary mineral assemblages. This study provides a comprehensive framework for understanding the geological and mineralization dynamics of non-volcanic hydrothermal systems in Central Kalimantan, Indonesia
References
Amita, K., Ohsawa, S., Nishimura, K., Yamada, M., Mishima, T., Kazahaya, K., Morikawa, N., & Hirajima, T. (2014). Origin of saline waters distributed along the Median Tectonic Line in southwest Japan: Hydrogeochemical investigation on possibility of derivation of metamorphic dehydrated fluid from subducting oceanic plate. Journal of Japanese Association of Hydrological Sciences, 44(1), 17–38. https://doi.org/10.4145/jahs.44.17
Anjarwati, R., Idrus, A., Setijadji, L.D., 2019. Petrography and ore mineral study at Beruang Kanan Site, Gunung Mas Regency, Central of Kalimantan Province. J. Phys. Conf. Ser. 1242, 012052. https://doi.org/10.1088/1742-6596/1242/1/012052
Anuar, M. N. A., Arifin, M. H., Baioumy, H., & Nawawi, M. (2021). A geochemical comparison between volcanic and non-volcanic hot springs from East Malaysia: Implications for their origin and geothermometry. Journal of Asian Earth Sciences, 217(August 2020), 104843. https://doi.org/10.1016/j.jseaes.2021.104843
Arnorsson, S., Gunnlaugsson, E., & Svavarsson, H. (1983). The chemistry of geothermal waters in Iceland . II . Mineral equilibria and independent variables controlling water compositions. Geochimica et Cosmochimica Acta, 47, 547–566.
Aryanto, N. C. D., & Kamiludin, U. (2016). The Content of placer heavy mineral and characteristics of REE at Toboali Coast and its surrounding area , Bangka Belitung Province. Bulletin of the Marine Geology, 31(1), 45–54.
Baioumy, H., Nawawi, M., Wagner, K., & Arifin, M. H. (2015). Geochemistry and geothermometry of non-volcanic hot springs in West Malaysia. Journal of Volcanology and Geothermal Research, 290(December), 12–22. https://doi.org/10.1016/j.jvolgeores.2014.11.014
Basaham, A. S., El Sayed, M. A., Ghandour, I. M., & Masuda, H. (2015). Geochemical background for the Saudi Red Sea coastal systems and its implication for future environmental monitoring and assessment. Environmental Earth Sciences, 74(5), 4561–4570. https://doi.org/10.1007/s12665-015-4477-5
Carlile, J.C., Mitchell, A.H.G., 1994. Magmatic arcs and associated gold and copper mineralization in Indonesia. J. Geochem. Explor. 50, 91–142. https://doi.org/10.1016/0375-6742(94)90022-1
Chen, X., Zheng, Y., Gao, S., Wu, S., Jiang, X., Jiang, J., Cai, P., & Lin, C. (2020). Ages and petrogenesis of the late Triassic andesitic rocks at the Luerma porphyry Cu deposit, western Gangdese, and implications for regional metallogeny. Gondwana Research, 85, 103–123. https://doi.org/10.1016/j.gr.2020.04.006
Czinder, B., & Török, Á. (2021). Strength and abrasive properties of andesite: relationships between strength parameters measured on cylindrical test specimens and micro-Deval values—a tool for durability assessment. Bulletin of Engineering Geology and the Environment, 80(12), 8871–8889. https://doi.org/10.1007/s10064-020-01983-9
Guo, Q., & Wang, Y. (2012). Geochemistry of hot springs in the Tengchong hydrothermal areas, Southwestern China. Journal of Volcanology and Geothermal Research, 215–216, 61–73. https://doi.org/10.1016/j.jvolgeores.2011.12.003
Harlaux, M., Mercadier, J., Bonzi, W. M. E., Kremer, V., Marignac, C., & Cuney, M. (2017). Geochemical Signature of Magmatic-Hydrothermal Fluids Exsolved from the Beauvoir Rare-Metal Granite (Massif Central, France): Insights from LA-ICPMS Analysis of Primary Fluid Inclusions. Geofluids, 2017. https://doi.org/10.1155/2017/1925817
Hartmann, L. A., Hoerlle, G., & Renner, L. C. (2024). Extensive two-tier structure and breccia stockwork formation by hydrothermal processes in the first Paraná lava flow covering the Botucatu paleoerg-turned-Guarani Paleoaquifer. Journal of South American Earth Sciences, 133(May 2023). https://doi.org/10.1016/j.jsames.2023.104734
Henley, R., Truesdell, A. ., Barton, P. ., & Whitney, J. . (1984). Fluid-mineral equilibria in hydrothermal systems. Society of Economic Geologist.
Kusuhara, F., Kazahaya, K., Morikawa, N., Yasuhara, M., Tanaka, H., Takahashi, M., & Tosaki, Y. (2020). Original composition and formation process of slab-derived deep brine from Kashio mineral spring in central Japan. Earth, Planets and Space, 72(1). https://doi.org/10.1186/s40623-020-01225-y
Meju, M. A., & Le, L. (2002). Geoelectromagneticexploration For Natural Resources:Models, Case Studies and Challenges. Surveys in Geophysics, 23, 133–205.
Mibei, G. (2014). Presented at Short Course IX on Exploration for Geothermal Resources, INTRODUCTION TO TYPES AND CLASSIFICATION OF ROCKS. 1–12.
Nakada, S., Maeno, F., Yoshimoto, M., Hokanishi, N., Shimano, T., Zaennudin, A., & Iguchi, M. (2019). Eruption scenarios of active volcanoes in Indonesia. Journal of Disaster Research, 14(1), 40–50. https://doi.org/10.20965/JDR.2019.P0040
Nugraha, A. S., Darsono, D., & Legowo, B. (2019). Identification of the distribution of andesite rocks in Kalirejo Village, Kokap District, Kulon Progo Regency, Special Region of Yogyakarta based on geoelectrical tomography data. Journal of Physics: Conference Series, 1153(1). https://doi.org/10.1088/1742-6596/1153/1/012019
Saparun, M., Akbar, R., Marbun, M., Dixit, A., & Saxena, A. (2022). Application of Induced Polarization and Resistivity to the Determination of the Location of Minerals in Extrusive Rock Area, Southern Mountains of Java, Indonesia. International Journal of Hydrological and Environmental for Sustainability, 1(3), 108–119. https://doi.org/10.58524/ijhes.v1i3.137
Stone, A., Inglis, R., Barfod, D., Ickert, R., Hughes, L., Waters, J., Jourdan, A. L., & Alsharekh, A. M. (2022). Hydroclimatic and geochemical palaeoenvironmental records within tufa: A cool-water fluvio-lacustrine tufa system in the Wadi Dabsa volcanic setting, western Saudi Arabia. Sedimentary Geology, 437, 106181. https://doi.org/10.1016/j.sedgeo.2022.106181
Thoreau, H. D., & Prayer, Y. I. (2000). Rocks & Minerals (p. 38).
Tongkul, F. (2017). Active tectonics in Sabah – seismicity and active faults. Bulletin of the Geological Society of Malaysia, 64(December), 27–36. https://doi.org/10.7186/bgsm64201703
Van Leeuwen, T.M., 1994, 25 Years of Mineral Exploration and Discovery in Indonesia, Journal of Geochemical Exploration 50, p. 13-90.
Wan, H., Sun, H., Liu, H., & Xiao, Y. (2017). Lithium Isotopic Geochemistry in Subduction Zones: Retrospects and Prospects. Acta Geologica Sinica (English Edition), 91(2), 688–710. https://doi.org/10.1111/1755-6724.13126
Wang, L., Song, J., & Yu, C. (2024). The utilization and advancement of quartz crystal Microbalance (QCM): A mini review. Microchemical Journal, 199(October 2023), 109967. https://doi.org/10.1016/j.microc.2024.109967
Wang, P., Chen, X., Shen, L., Wu, K., Huang, M., & Xiao, Q. (2016). Geochemical features of the geothermal fluids from the Mapamyum non-volcanic geothermal system (Western Tibet, China). Journal of Volcanology and Geothermal Research, 320, 29–39. https://doi.org/10.1016/j.jvolgeores.2016.04.002
Wu, D., Purnomo, B. J., & Sun, S. (2017). As and Sb speciation in relation with physico-chemical characteristics of hydrothermal waters in Java and Bali. Journal of Geochemical Exploration, 173, 85–91. https://doi.org/10.1016/j.gexplo.2016.12.003
You, C. F., Castillo, P. R., Gieskes, J. M., Chan, L. H., & Spivack, A. J. (1996). Trace element behavior in hydrothermal experiments: Implications for fluid processes at shallow depths in subduction zones. Earth and Planetary Science Letters, 140(1–4), 41–52. https://doi.org/10.1016/0012-821X(96)00049-0
Yuhara, K., & Seno, K. (1969). Geology, geophysics and geochemistry of hot and mineral springs. In Chijinshokan & Co., Ltd., Tokyo, Japan (pp. 155–166).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Foundae (Foundation of Advanced Education)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
