Geochemical and Mineralogical Insights into Hydrothermal Alteration in the Beruang Kanan Non-Vulcanic Area, Central Kalimantan, Indonesia

Authors

  • Retno Anjarwati Department of Geology, Universitas Pembangunan Nasional Veteran Yogyakarta
  • Sutarto Sutarto Department of Geology, Universitas Pembangunan Nasional Veteran Yogyakarta
  • Dwi Fitri Yudiantoro Department of Geological Engineering, Universitas Pembangunan Nasional Veteran Yogyakarta
  • Arifudin Idrus Department of Geological Engineering, Universitas Gadjah Mada
  • Emi Prasetyawati Umar Department of Mining Engineering, Universitas Muslim Indonesia

DOI:

https://doi.org/10.58524/ijhes.v4i2.767

Keywords:

hydrothermal, rocks, sandstone, alteration, sericitic, propylitic

Abstract

Previous studies have revealed significant hydrothermal alterations within the Beruang Kanan Non-Volcanic Area, Central Kalimantan, Indonesia, resulting in extensive ore mineralizations. This study aims to examine the effects of hydrothermal processes on rock alteration, delineate alteration zones, and establish their relationship to metal mineralization. The research area, situated in the Tumbang Miri district of Gunung Mas regency, forms part of the Corrugated Hills Geomorphological Unit and is traversed by the Schwaner Mountains, with elevations ranging from approximately 50 to 400 meters. Stratigraphic analysis identifies three primary rock units, ordered from oldest to youngest: the Tuffaceous Sandstone Unit, the Dacitic Tuff Unit, and the Andesite Unit. Hydrothermal alterations have resulted in three distinct alteration zones sericitic, argillic, and propylitic characterized by secondary mineral assemblages. This study provides a comprehensive framework for understanding the geological and mineralization dynamics of non-volcanic hydrothermal systems in Central Kalimantan, Indonesia

Author Biography

  • Retno Anjarwati, Department of Geology, Universitas Pembangunan Nasional Veteran Yogyakarta
    Department of Geological Engineering, Universitas Mulawarman Samarinda, Indonesia

References

Amita, K., Ohsawa, S., Nishimura, K., Yamada, M., Mishima, T., Kazahaya, K., Morikawa, N., & Hirajima, T. (2014). Origin of saline waters distributed along the Median Tectonic Line in southwest Japan: Hydrogeochemical investigation on possibility of derivation of metamorphic dehydrated fluid from subducting oceanic plate. Journal of Japanese Association of Hydrological Sciences, 44(1), 17–38. https://doi.org/10.4145/jahs.44.17

Anjarwati, R., Idrus, A., Setijadji, L.D., 2019. Petrography and ore mineral study at Beruang Kanan Site, Gunung Mas Regency, Central of Kalimantan Province. J. Phys. Conf. Ser. 1242, 012052. https://doi.org/10.1088/1742-6596/1242/1/012052

Anuar, M. N. A., Arifin, M. H., Baioumy, H., & Nawawi, M. (2021). A geochemical comparison between volcanic and non-volcanic hot springs from East Malaysia: Implications for their origin and geothermometry. Journal of Asian Earth Sciences, 217(August 2020), 104843. https://doi.org/10.1016/j.jseaes.2021.104843

Arnorsson, S., Gunnlaugsson, E., & Svavarsson, H. (1983). The chemistry of geothermal waters in Iceland . II . Mineral equilibria and independent variables controlling water compositions. Geochimica et Cosmochimica Acta, 47, 547–566.

Aryanto, N. C. D., & Kamiludin, U. (2016). The Content of placer heavy mineral and characteristics of REE at Toboali Coast and its surrounding area , Bangka Belitung Province. Bulletin of the Marine Geology, 31(1), 45–54.

Baioumy, H., Nawawi, M., Wagner, K., & Arifin, M. H. (2015). Geochemistry and geothermometry of non-volcanic hot springs in West Malaysia. Journal of Volcanology and Geothermal Research, 290(December), 12–22. https://doi.org/10.1016/j.jvolgeores.2014.11.014

Basaham, A. S., El Sayed, M. A., Ghandour, I. M., & Masuda, H. (2015). Geochemical background for the Saudi Red Sea coastal systems and its implication for future environmental monitoring and assessment. Environmental Earth Sciences, 74(5), 4561–4570. https://doi.org/10.1007/s12665-015-4477-5

Carlile, J.C., Mitchell, A.H.G., 1994. Magmatic arcs and associated gold and copper mineralization in Indonesia. J. Geochem. Explor. 50, 91–142. https://doi.org/10.1016/0375-6742(94)90022-1

Chen, X., Zheng, Y., Gao, S., Wu, S., Jiang, X., Jiang, J., Cai, P., & Lin, C. (2020). Ages and petrogenesis of the late Triassic andesitic rocks at the Luerma porphyry Cu deposit, western Gangdese, and implications for regional metallogeny. Gondwana Research, 85, 103–123. https://doi.org/10.1016/j.gr.2020.04.006

Czinder, B., & Török, Á. (2021). Strength and abrasive properties of andesite: relationships between strength parameters measured on cylindrical test specimens and micro-Deval values—a tool for durability assessment. Bulletin of Engineering Geology and the Environment, 80(12), 8871–8889. https://doi.org/10.1007/s10064-020-01983-9

Guo, Q., & Wang, Y. (2012). Geochemistry of hot springs in the Tengchong hydrothermal areas, Southwestern China. Journal of Volcanology and Geothermal Research, 215–216, 61–73. https://doi.org/10.1016/j.jvolgeores.2011.12.003

Harlaux, M., Mercadier, J., Bonzi, W. M. E., Kremer, V., Marignac, C., & Cuney, M. (2017). Geochemical Signature of Magmatic-Hydrothermal Fluids Exsolved from the Beauvoir Rare-Metal Granite (Massif Central, France): Insights from LA-ICPMS Analysis of Primary Fluid Inclusions. Geofluids, 2017. https://doi.org/10.1155/2017/1925817

Hartmann, L. A., Hoerlle, G., & Renner, L. C. (2024). Extensive two-tier structure and breccia stockwork formation by hydrothermal processes in the first Paraná lava flow covering the Botucatu paleoerg-turned-Guarani Paleoaquifer. Journal of South American Earth Sciences, 133(May 2023). https://doi.org/10.1016/j.jsames.2023.104734

Henley, R., Truesdell, A. ., Barton, P. ., & Whitney, J. . (1984). Fluid-mineral equilibria in hydrothermal systems. Society of Economic Geologist.

Kusuhara, F., Kazahaya, K., Morikawa, N., Yasuhara, M., Tanaka, H., Takahashi, M., & Tosaki, Y. (2020). Original composition and formation process of slab-derived deep brine from Kashio mineral spring in central Japan. Earth, Planets and Space, 72(1). https://doi.org/10.1186/s40623-020-01225-y

Meju, M. A., & Le, L. (2002). Geoelectromagneticexploration For Natural Resources:Models, Case Studies and Challenges. Surveys in Geophysics, 23, 133–205.

Mibei, G. (2014). Presented at Short Course IX on Exploration for Geothermal Resources, INTRODUCTION TO TYPES AND CLASSIFICATION OF ROCKS. 1–12.

Nakada, S., Maeno, F., Yoshimoto, M., Hokanishi, N., Shimano, T., Zaennudin, A., & Iguchi, M. (2019). Eruption scenarios of active volcanoes in Indonesia. Journal of Disaster Research, 14(1), 40–50. https://doi.org/10.20965/JDR.2019.P0040

Nugraha, A. S., Darsono, D., & Legowo, B. (2019). Identification of the distribution of andesite rocks in Kalirejo Village, Kokap District, Kulon Progo Regency, Special Region of Yogyakarta based on geoelectrical tomography data. Journal of Physics: Conference Series, 1153(1). https://doi.org/10.1088/1742-6596/1153/1/012019

Saparun, M., Akbar, R., Marbun, M., Dixit, A., & Saxena, A. (2022). Application of Induced Polarization and Resistivity to the Determination of the Location of Minerals in Extrusive Rock Area, Southern Mountains of Java, Indonesia. International Journal of Hydrological and Environmental for Sustainability, 1(3), 108–119. https://doi.org/10.58524/ijhes.v1i3.137

Stone, A., Inglis, R., Barfod, D., Ickert, R., Hughes, L., Waters, J., Jourdan, A. L., & Alsharekh, A. M. (2022). Hydroclimatic and geochemical palaeoenvironmental records within tufa: A cool-water fluvio-lacustrine tufa system in the Wadi Dabsa volcanic setting, western Saudi Arabia. Sedimentary Geology, 437, 106181. https://doi.org/10.1016/j.sedgeo.2022.106181

Thoreau, H. D., & Prayer, Y. I. (2000). Rocks & Minerals (p. 38).

Tongkul, F. (2017). Active tectonics in Sabah – seismicity and active faults. Bulletin of the Geological Society of Malaysia, 64(December), 27–36. https://doi.org/10.7186/bgsm64201703

Van Leeuwen, T.M., 1994, 25 Years of Mineral Exploration and Discovery in Indonesia, Journal of Geochemical Exploration 50, p. 13-90.

Wan, H., Sun, H., Liu, H., & Xiao, Y. (2017). Lithium Isotopic Geochemistry in Subduction Zones: Retrospects and Prospects. Acta Geologica Sinica (English Edition), 91(2), 688–710. https://doi.org/10.1111/1755-6724.13126

Wang, L., Song, J., & Yu, C. (2024). The utilization and advancement of quartz crystal Microbalance (QCM): A mini review. Microchemical Journal, 199(October 2023), 109967. https://doi.org/10.1016/j.microc.2024.109967

Wang, P., Chen, X., Shen, L., Wu, K., Huang, M., & Xiao, Q. (2016). Geochemical features of the geothermal fluids from the Mapamyum non-volcanic geothermal system (Western Tibet, China). Journal of Volcanology and Geothermal Research, 320, 29–39. https://doi.org/10.1016/j.jvolgeores.2016.04.002

Wu, D., Purnomo, B. J., & Sun, S. (2017). As and Sb speciation in relation with physico-chemical characteristics of hydrothermal waters in Java and Bali. Journal of Geochemical Exploration, 173, 85–91. https://doi.org/10.1016/j.gexplo.2016.12.003

You, C. F., Castillo, P. R., Gieskes, J. M., Chan, L. H., & Spivack, A. J. (1996). Trace element behavior in hydrothermal experiments: Implications for fluid processes at shallow depths in subduction zones. Earth and Planetary Science Letters, 140(1–4), 41–52. https://doi.org/10.1016/0012-821X(96)00049-0

Yuhara, K., & Seno, K. (1969). Geology, geophysics and geochemistry of hot and mineral springs. In Chijinshokan & Co., Ltd., Tokyo, Japan (pp. 155–166).

Downloads

Published

2025-06-30

How to Cite

Anjarwati, R., Sutarto, S., Yudiantoro, D. F., Idrus, A., & Umar, E. P. (2025). Geochemical and Mineralogical Insights into Hydrothermal Alteration in the Beruang Kanan Non-Vulcanic Area, Central Kalimantan, Indonesia. International Journal of Hydrological and Environmental for Sustainability, 4(2), 75-85. https://doi.org/10.58524/ijhes.v4i2.767