High-Resolution Resistivity Analysis of Andesite Rock Distribution in Kulon Progo’s Mineral-Rich Terrain

Authors

  • Rizqi Prastowo Department of Mining Engineering, Institut Teknologi Nasional Yogyakarta
  • Oky Sugarbo Department of Geology, Institut Teknologi Nasional Yogyakarta
  • Nanda Juli Setiawan Department of Mining Engineering, Institut Teknologi Nasional Yogyakarta
  • Setyo Pambudi Department of Geology Engineering, Institut Teknologi Nasional Yogyakarta
  • Yogesh Murkute Postgraduate Department of Geology, Nagpur University
  • Vishal R. Panse Late.B.S.ArtsProf.N.G.Science & A.G.Commerce, College Sakharkherda http://orcid.org/0000-0002-3683-466X

DOI:

https://doi.org/10.58524/ijhes.v4i2.707

Keywords:

geophysical methods, electrical resistivity imaging, andesitic rock formations, gravity modeling, mineral resource development

Abstract

This study employs integrated geophysical methods to analyze the spatial distribution and subsurface geometry of andesitic rock formations in the Mujil Hill area, Kulon Progo, Yogyakarta. Electrical resistivity imaging (ERI), using a dipole-dipole configuration, was conducted to identify high-resistivity zones (>1000 Ωm), which are interpreted as fresh andesitic intrusions. These zones are consistently found at an average depth of 10 meters, embedded within moderately resistive volcanic breccia. Near-surface layers with low resistivity values (<100 Ωm) are associated with weathered volcanic deposits or unconsolidated soil. To enhance subsurface structural interpretation, resistivity data were complemented with gravity modeling, providing a more comprehensive geological assessment. The results confirm the lateral continuity and shallow emplacement of andesite bodies, highlighting their potential as a local source of construction material. This integrated geophysical approach supports sustainable mineral resource development and aligns with the objectives of the regional economic empowerment program, contributing to the responsible utilization of local geological resources.

References

Al Bulushi, A. M., Al Wardi, M., Al Shaqsi, B., & Sundararajan, N. (2016). Mapping of subsurface fault structures by VLF-EM method in Al Khoud area, Muscat, Sultanate of Oman. Arabian Journal of Geosciences, 9(5). https://doi.org/10.1007/s12517-016-2331-z

Anuar, M. N. A., Arifin, M. H., Baioumy, H., & Nawawi, M. (2021). A geochemical comparison between volcanic and non-volcanic hot springs from East Malaysia: Implications for their origin and geothermometry. Journal of Asian Earth Sciences, 217(August 2020), 104843. https://doi.org/10.1016/j.jseaes.2021.104843

Chambers, J., Holmes, J., Whiteley, J., Boyd, J., Meldrum, P., Wilkinson, P., Kuras, O., Swift, R., Harrison, H., Glendinning, S., Stirling, R., Huntley, D., Slater, N., & Donohue, S. (2022). Long-term geoelectrical monitoring of landslides in natural and engineered slopes. Leading Edge, 41(11), 768–767. https://doi.org/10.1190/tle41110768.1

Chen, X., Zheng, Y., Gao, S., Wu, S., Jiang, X., Jiang, J., Cai, P., & Lin, C. (2020). Ages and petrogenesis of the late Triassic andesitic rocks at the Luerma porphyry Cu deposit, western Gangdese, and implications for regional metallogeny. Gondwana Research, 85, 103–123. https://doi.org/10.1016/j.gr.2020.04.006

Cole, M. J., Mthenjane, M., & van Zyl, A. T. (2023). Assessing coal mine closures and mining community profiles for the ‘just transition’ in South Africa. Journal of the Southern African Institute of Mining and Metallurgy, 123(6), 329–342. https://doi.org/10.17159/2411-9717/2689/2023

Czinder, B., & Török, Á. (2021). Strength and abrasive properties of andesite: relationships between strength parameters measured on cylindrical test specimens and micro-Deval values—a tool for durability assessment. Bulletin of Engineering Geology and the Environment, 80(12), 8871–8889. https://doi.org/10.1007/s10064-020-01983-9

Fattah, N. M., Khalil, M. A., & Aboelkhair, H. (2023). Integration of geoelectrical and geotechnical data for evaluating subsurface lithology. Environmental Earth Sciences, 82, 357. https://doi.org/10.1007/s12665-023-10918-w

Hermawan, O. R., & Putra, D. P. E. (2016). The Effectiveness of Wenner-Schlumberger and Dipole-dipole Array of 2D Geoelectrical Survey to Detect The Occurring of Groundwater in the Gunung Kidul Karst Aquifer System, Yogyakarta, Indonesia. Journal of Applied Geology, 1(2), 71–81.

Ibrahim, E., Gultaf, H., Saputra, H., Agustina, L. K., Rahmanda, V., Suhendi, C., Sudibyo, M. R. P., & Rizki, R. (2019). Preliminary Result: Identification of Landslides Using Electrical Resistivity Tomography Case Study Mt. Betung. Journal of Science and Application Technology, 2(1), 107–110. https://doi.org/10.35472/281455

Jamal, N., & Singh, N. P. (2018). Identification of fracture zones for groundwater exploration using very low frequency electromagnetic (VLF-EM) and electrical resistivity (ER) methods in hard rock area of Sangod Block, Kota District, Rajasthan, India. Groundwater for Sustainable Development, 7(May), 195–203. https://doi.org/10.1016/j.gsd.2018.05.003

Jayadi, H., Meidji, I. U., & Tang, B. Y. (2019). Identifying Andesite Rock Sources Using Geoelectrical Resistivity in Loli, Donggala Regency, Central Sulawesi. Journal of Physical Science and Engineering, 4(2), 45–54.

Kapugu, E. R., Adnyano, A. A. I. A., Prastowo, R., Zamroni, A., Kaur, M., & Brahme, N. (2022). The Effectiveness of Sump Dimension Design: A Case Study in Nickel Mining. International Journal of Hydrological and Environmental for Sustainability, 1(1), 41–53. https://doi.org/10.58524/ijhes.v1i1.69

Karingithi, C. W. (2009). Chemical geothermometers for geothermal exploration.

Khalil, M. A., El-Qady, G., & Aboelkhair, H. (2020). Electrical resistivity imaging for mapping groundwater contamination and geological structures. Journal of Applied Geophysics, 182, 104155.

Kusmita, T. (2021). 2D Electrical Resistivity Imaging to Determine Depth of Andesite Spreading at Tanjung Batu, Jambi. IOP Conference Series: Earth and Environmental Science, 12046.

Listyani, R. A. T.-, Prabowo, I. A., & De Jesus, A. A. (2023). Aquifer Potential Analysis Based On Hydrostratigraphy and Geological Lineament In Kokap Region, Kulon Progo, Yogyakarta, Indonesia. International Journal of Hydrological and Environmental for Sustainability, 2(2), 50–64. https://doi.org/10.58524/ijhes.v2i2.197

Loke, M. H., Wilkinson, P. B., & Chambers, J. E. (2022). Recent developments in electrical imaging and advances in 3D inversion techniques. Surveys in Geophysics, 43, 55–80. https://doi.org/10.1007/s10712-021-09645-9

Lu, Z., Dai, J., Song, X., Wang, G., & Yang, W. (2008). Facile synthesis of Fe3O4/SiO2 composite nanoparticles from primary silica particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317(1–3), 450–456. https://doi.org/10.1016/j.colsurfa.2007.11.020

Martinho, E. (2023). Electrical Resistivity and Induced Polarization Methods for Environmental Investigations: an Overview. In Water, Air, and Soil Pollution (Vol. 234, Issue 4). Springer International Publishing. https://doi.org/10.1007/s11270-023-06214-x

Meju, M. A., & Le, L. (2002). Geoelectromagneticexploration For Natural Resources:Models, Case Studies and Challenges. Surveys in Geophysics, 23, 133–205.

Muthamilselvan, A., Rajasekaran, N., & Suresh, R. (2019). Mapping of hard rock aquifer system and artificial recharge zonation through remote sensing and GIS approach in parts of Perambalur District of Tamil Nadu, India. Journal of Groundwater Science and Engineering, 7(3), 264–281. https://doi.org/10.19637/j.cnki.2305-7068.2019.03.007

Nishimura, S., Nishida, J., Yokoyama, T., & Hehuwat, F. (1986). Neo-tectonics of the Strait of Sunda, Indonesia. Journal of Southeast Asian Earth Sciences, 1(2), 81–91. https://doi.org/10.1016/0743-9547(86)90023-1

Nugraha, A. S., Darsono, D., & Legowo, B. (2019). Identification of the distribution of andesite rocks in Kalirejo Village, Kokap District, Kulon Progo Regency, Special Region of Yogyakarta based on geoelectrical tomography data. Journal of Physics: Conference Series, 1153(1). https://doi.org/10.1088/1742-6596/1153/1/012019

Playà, E., Rivero, L., & Himi, M. (2010). Electrical resistivity tomography and induced polarization techniques applied to the identification of gypsum rocks ‡. Near Surface Geophysics, 249–257. https://doi.org/10.3997/1873-0604.2010009

Prastowo, R., Huda, S., Umam, R., Jermsittiparsert, K., Prasetiyo, A. E., Tortop, H. S., & Syazali, M. (2019). Academic Achievement and Conceptual Understanding of Electrodynamics: Applications Geoelectric Using Cooperative Learning Model. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 8(2), 165–175. https://doi.org/10.24042/jipfalbiruni.v0i0.4614

Purwanto, M. S., Susilo, A., Bahri, A. S., Naba, A., Sari, U. I., & Almais, A. T. W. (2024). Mapping Underground River Flows in karst Areas with the VLF-EM Method (Case Study of the Krawak Region, Singgahan Tuban). IOP Conference Series: Earth and Environmental Science, 1307(1). https://doi.org/10.1088/1755-1315/1307/1/012005

Saparun, M., Akbar, R., Marbun, M., Dixit, A., & Saxena, A. (2022). Application of Induced Polarization and Resistivity to the Determination of the Location of Minerals in Extrusive Rock Area, Southern Mountains of Java, Indonesia. International Journal of Hydrological and Environmental for Sustainability, 1(3), 108–119. https://doi.org/10.58524/ijhes.v1i3.137

Schack, S., & Foundation, K. (2015). The Effectiveness of E-Learning : An Explorative and Integrative Review of the Definitions , Methodologies and Factors that Promote e-Learning Effectiveness ResearchLAB : IT and Learning Design , Dep . of Learning and Philosophy , Aalborg. The Electronic Journal of E-Learning, 13(4), 278–290.

Siregar, R. N., & Kurniawan, W. B. (2018). 2D Interpretation Of Subsurface Hot Spring Geothermal Structure In Nyelanding Village Through Schlumberger Geoelectricity. Jurnal Ilmiah Pendidikan FisikaAl-BiRuNi, 07(April), 81–87. https://doi.org/10.24042/jipfalbiruni.v7i1.2324

Sujitapan, C., Kendall, J. M., Chambers, J. E., & Yordkayhun, S. (2024). Landslide assessment through integrated geoelectrical and seismic methods: A case study in Thungsong site, southern Thailand. Heliyon, 10(2). https://doi.org/10.1016/j.heliyon.2024.e24660

Tabrizi, M., Yazdani, M. R., & Moayedi, H. (2022). Application of geoelectrical techniques in engineering site investigation and groundwater studies. Bulletin of Engineering Geology and the Environment, 81, 276. https://doi.org/10.1007/s10064-021-02518-1

Thoreau, H. D., & Prayer, Y. I. (2000). Rocks & Minerals (p. 38).

Umam, R., Junaidi, R., Syazali, M., Farid, F., Saregar, A., & Andiyan, A. (2025). Optimization of Piper Trilinier Diagram Using Lithium Isotope Systematics : An Application for Detecting the Contribution of Geothermal Water from Aso Caldera after Earthquake 2016 in Kumamoto Aquifer , Japan. Indonesian Journal of Science & Technology, 10(1), 159–170.

Yu, L., Rozemeijer, J., Van Breukelen, B. M., Ouboter, M., Van Der Vlugt, C., & Broers, H. P. (2018). Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: Monitoring the greater Amsterdam area. Hydrology and Earth System Sciences, 22(1), 487–508. https://doi.org/10.5194/hess-22-487-2018

Zheng, H., Luo, J., Zhang, Y., Feng, J., Zeng, Y., & Wang, M. (2021). Geological Characteristics and Distribution of Granite Geothermal Reservoir in Southeast Coastal Areas in China. Frontiers in Earth Science, 9(August), 1–18. https://doi.org/10.3389/feart.2021.683696

Zoysa, R. S. De, Schöne, T., Herbeck, J., Illigner, J., Haghighi, M., Simarmata, H., Porio, E., Rovere, A., & Hornidge, A. K. (2021). The “wickedness” of governing land subsidence: Policy perspectives from urban southeast Asia. PLoS ONE, 16(6 June), 1–25. https://doi.org/10.1371/journal.pone.0250208

Downloads

Published

2025-06-30

How to Cite

Prastowo, R., Sugarbo, O., Setiawan, N. J., Pambudi, S., Murkute, Y., & Panse, V. R. (2025). High-Resolution Resistivity Analysis of Andesite Rock Distribution in Kulon Progo’s Mineral-Rich Terrain. International Journal of Hydrological and Environmental for Sustainability, 4(2), 63-74. https://doi.org/10.58524/ijhes.v4i2.707