Analysis of Reservoir Temperature Estimation using Major Elements in Sulili Geothermal Field, South Sulawesi, Indonesia: Implications for Geothermal Energy Forecasts
DOI:
https://doi.org/10.58524/ijhes.v4i1.568Keywords:
geothermal energy, geothermometer, manifestation, major elements, reservoir temperatureAbstract
Geothermal is a natural resource energy in the form of hot water or steam that forms in reservoirs within the earth through the heating of subsurface water by hot igneous rocks. Based on field surveys, the Sulili area shows characteristics of geothermal energy in the form of hot springs. The research aims to use the Na-K geothermometer to find out the temperature of the geothermal reservoir below the ground and the Na-K-Mg geothermometer to look into the type of fluid that is in the geothermal reservoir. The research employs the geochemical analysis method in conjunction with the Na-K geothermometer method. Reservoir subsurface temperature is estimated at EPU station 1 at 326.504°C, EPU station 2 at 473.369°C, and station EPU 3 at 456.508°C. According to the results, the hot springs at the three sites are chlorides with temperatures below ground that are part of the high-temperature geothermal system and are >225°C. The hot spring is in the immature water group. Based on the calculation, the Sulili Geothermal Field with an average reservoir temperature of 418°C is approximately 68.33 MWh. This is a simplified calculation, and actual energy output can vary based on several factors, including the specific characteristics of the geothermal reservoir and the efficiency of the power plant.
References
Anuar, M. N. A., Arifin, M. H., Baioumy, H., & Nawawi, M. (2021a). A geochemical comparison between volcanic and non-volcanic hot springs from East Malaysia: Implications for their origin and geothermometry. Journal of Asian Earth Sciences, 217(August 2020), 104843. https://doi.org/10.1016/j.jseaes.2021.104843
Anuar, M. N. A., Arifin, M. H., Baioumy, H., & Nawawi, M. (2021b). A geochemical comparison between volcanic and non-volcanic hot springs from East Malaysia: Implications for their origin and geothermometry. Journal of Asian Earth Sciences, 217(May), 104843. https://doi.org/10.1016/j.jseaes.2021.104843
Arienzo, I., Liotta, M., Brusca, L., D’Antonio, M., Lupone, F., & Cucciniello, C. (2020). Analytical method for lithium isotopes determination by thermal ionization mass spectrometry: A useful tool for hydrogeochemical applications. Water (Switzerland), 12(8). https://doi.org/10.3390/W12082182
Arrofi, D., Abu-Mahfouz, I. S., & Prayudi, S. D. (2024). Lithium enrichment in high-enthalpy geothermal system influenced by seawater, Indonesia. Scientific Reports, 14(1), 1–23. https://doi.org/10.1038/s41598-024-74462-w
Batsala, M., Chandu, B., Sakala, B., Nama, S., & Domatoti, S. (2012). Inductively Coupled Plasma Mass Spectrometry (Icp-Ms). Inductively Coupled Plasma Mass Spectrometry (Icp-Ms), 2(3), 672–680.
Blanchette, D., Lefebvre, R., Nastev, M., & Cloutier, V. (2010). Groundwater quality, geochemical processes and groundwater evolution in the Chateauguay River watershed, Quebec, Canada. Canadian Water Resources Journal, 35(4), 503–526. https://doi.org/10.4296/cwrj3504503
Fauziyyah, F., Prabowo, T. R., Shalihin, M. G. J., Setiawan, D. I., & Yushantarti, A. (2016). Geochemical Study of Ampallas Geothermal Area, Mamuju District, West Sulawesi Province. IOP Conference Series: Earth and Environmental Science, 42(1). https://doi.org/10.1088/1755-1315/42/1/012002
Gede Boy Darmawan, I., Donny Setijadji, L., & Wintolo, D. (2015). Geology and Geothermal System in Rajabasa Volcano South Lampung Regency, Indonesia (Approach to Field Observations, Water Geochemistry and Magnetic Methods). Proceedings World Geothermal Congress, June, 19–25. https://www.researchgate.net/publication/317425339
Giggenbach, W. F. (1992). Chemica Techniques in Geothermal Exploration. In Chemistry Devision (pp. 119–144).
Harlaux, M., Mercadier, J., Bonzi, W. M. E., Kremer, V., Marignac, C., & Cuney, M. (2017). Geochemical Signature of Magmatic-Hydrothermal Fluids Exsolved from the Beauvoir Rare-Metal Granite (Massif Central, France): Insights from LA-ICPMS Analysis of Primary Fluid Inclusions. Geofluids, 2017. https://doi.org/10.1155/2017/1925817
Hochstein, M. P., & Sudarman, S. (1993). Geothermal resources of Sumatra. Geothermics, 22(3), 181–200. https://doi.org/10.1016/0375-6505(93)90042-L
Hristov, V., Stoyanov, N., Valtchev, S., Kolev, S., & Benderev, A. (2019). Utilization of low enthalpy geothermal energy in Bulgaria. IOP Conference Series: Earth and Environmental Science, 249(1). https://doi.org/10.1088/1755-1315/249/1/012035
Idroes, R., Yusuf, M., Saiful, S., Alatas, M., Subhan, S., Lala, A., Muslem, M., Suhendra, R., Idroes, G, M., Marwan, M., & Mahlia, T, M, I. (2019). Geochemistry Exploration and Geothermometry. Energies MDPI, 12(4442), 2–17.
Iqbal, M., Juliarka, B. R., Ashuri, W., & Farishi, B. Al. (2019). Hydrogeochemistry of Natar and Cisarua Hot springs in South Lampung, Indonesia. Journal of Geoscience, Engineering, Environment, and Technology, 4(3), 178. https://doi.org/10.25299/jgeet.2019.4.3.4070
Iqbal, M., & Kusumasari, B. A. (2024). Deciphering the Way Ratai geothermal system, Lampung, Indonesia: A comprehensive geochemical and isotopic analysis. Geothermics, 119(March). https://doi.org/10.1016/j.geothermics.2024.102985
Iqbal, M., Kusumasari, B. A., Atmapradhana, T., Trinugraha, A. C., Palupi, E. K., & Maulidi, I. (2023). Characterization of Thermal Waters Origin from the Back Arc Lampung Province , Indonesia : An Evaluation of Stable Isotopes , Major Elements , and Li / Cl Ratios. International Journal of Hydrological and Environmental for Sustainability, 2(1), 1–12.
Jihad, A., Muksin, U., Syamsidik, & Ramli, M. (2021). Earthquake relocation to understand the megathrust segments along the Sumatran subduction zone. IOP Conference Series: Earth and Environmental Science, 630, 012002. https://doi.org/10.1088/1755-1315/630/1/012002
Masuda, H., Sakai, H., & Chiba, H. (1985). Geochemical in Arima and characteristics its vicinity of Na-Ca-CI-HCO3 in the western Kinki type district waters Japan. Geochemical Journal, 19(1), 149–162. https://doi.org/10.1111/j.1523-1739.2009.01332.x
Millot, R., Hegan, A., & Négrel, P. (2012). Geothermal waters from the Taupo Volcanic Zone, New Zealand: Li, B and Sr isotopes characterization. Applied Geochemistry, 27(3), 677–688. https://doi.org/10.1016/j.apgeochem.2011.12.015
Nukman, M., & Hochstein, M. P. (2019). The Sipoholon Geothermal Field and adjacent geothermal systems along the North-Central Sumatra Fault Belt, Indonesia: Reviews on geochemistry, tectonics, and natural heat loss. Journal of Asian Earth Sciences, 170(October 2018), 316–328. https://doi.org/10.1016/j.jseaes.2018.11.007
Riogilang, H., Itoi, R., & Taguchi, S. (2012). Origin of hot spring water in the Kotamobagu geothermal field, northern Sulawesi, Indonesia. Journal of the Geothermal Research Society of Japan, 34(3), 151–159.
Rybach, L., Wilhelm, J., & Gorhan, H. (2003). Geothermal use of tunnel waters – a Swiss speciality. International Geothermal Conference, January 2003, 17–23.
Sadashivaiah, C., Ramakrishnaiah, C. R., & Ranganna, G. (2008). Hydrochemical analysis and evaluation of groundwater quality in Tumkur Taluk, Karnataka State, India. International Journal of Environmental Research and Public Health, 5(3), 158–164. https://doi.org/10.3390/ijerph5030158
Schäffer, R., Sass, I., Heldmann, C. D., & Scheuvens, D. (2018). Geothermal drilling in an alpine karst aquifer and its impact on downstream springs – A case study from finkenberg, Tyrol, Austria. Acta Carsologica, 47(2–3), 139–151. https://doi.org/10.3986/ac.v47i2-3.4963
Singh, K. K., Tewari, G., & Kumar, S. (2020). Evaluation of Groundwater Quality for Suitability of Irrigation Purposes: A Case Study in the Udham Singh Nagar, Uttarakhand. Journal of Chemistry, 2020. https://doi.org/10.1155/2020/6924026
Thomas, R. (2001). A beginner’s guide to ICP-MS - Part III: The plasma source. Spectroscopy, 16(6), 26-+. isi:000169349200003
Toki, T., HESHIKI, S., & Shinjo, R. (2016). Improved Method for Seawater Lithium Isotopic Ratio Determination Using MC-ICP-MS. Bulletin of the Society of Sea Water Science, Japan, 326–331.
Triani, Umam, R., & Sismanto. (2021). 3D Modeling of Subsurface Lawanopo Fault in Southeast Sulawesi, Indonesia Using Grablox and its Consequence to Geohazard. Indonesian Journal of Geography, 53(1), 67–77. https://doi.org/10.22146/IJG.50878
Tsay, A., Zajacz, Z., Ulmer, P., & Sanchez-Valle, C. (2017). Mobility of major and trace elements in the eclogite-fluid system and element fluxes upon slab dehydration. Geochimica et Cosmochimica Acta, 198, 70–91. https://doi.org/10.1016/j.gca.2016.10.038
Umar, E. P., Anwar, H., Husain, J. R., Muharni, S., Jamaluddin, J., & Massinai, M. A. (2020). Pengaruh Struktur Geologi Terhadap Kemunculan Mataair Panas Daerah Sulili Pinrang Sulawesi Selatan. Jurnal Geocelebes, 4(1), 41. https://doi.org/10.20956/geocelebes.v4i1.9542
Umar, E. P., Nawir, A., Husain, J. R., Tamar, K. R., . M., . J., & Wakila, M. H. (2020). Analisis Fluida Dan Pemanfaatan Mata Air Panas Daerah Sulili Kabupaten Pinrang Provinsi Sulawesi-Selatan. Jurnal Geosaintek, 6(3), 161. https://doi.org/10.12962/j25023659.v6i3.8108
Umar, E. P., Wakila, M. H., Husain, J. R., Jamaluddin, J., Syamsuddin, S., & Aulia, R. N. (2022). Analisis Hidrokimia Dalam Penentuan Tipe Dan Golongan Fluida Geotermal Sulili Kabupaten Pinrang Sulawesi-Selatan. Jurnal Geosaintek, 8(3), 270. https://doi.org/10.12962/j25023659.v8i3.14897
Vuataz, F. D. (1983). Hydrology, geochemistry and geothermal aspects of the thermal waters from Switzerland and adjacent alpine regions. Journal of Volcanology and Geothermal Research, 19(1–2), 73–97. https://doi.org/10.1016/0377-0273(83)90125-7
Zheng, Y.-F., & Hermann, J. (2014). Geochemistry of continental subduction-zone fluids. Earth, Planets and Space, 66(1), 93. https://doi.org/10.1186/1880-5981-66-93
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Foundae (Foundation of Advanced Education)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
