Geothermal Waters from the Alpine Mountain Region, Europe: A Comprehensive Geochemical and Isotopic Analysis

Authors

DOI:

https://doi.org/10.58524/ijhes.v3i3.533

Keywords:

alpine mountain region, geochemical analysis, geothermal waters, isotopic analysis, water-rock interactions

Abstract

The Alpine region of Europe, which covers several countries including France, Switzerland, Italy, Austria and Germany, is characterised by its complex geology and significant geothermal potential. This research investigates the geochemical characteristics of geothermal water in the Alpine region, focusing on understanding the origin, evolution, and potential applications of these geothermal resources. Through comprehensive hydrochemical and isotopic analyses, we have identified key geochemical signatures that distinguish the various geothermal systems in the region. The results show that these geothermal waters are mainly influenced by deep magmatic processes, extensive water-rock interactions, and mixing of meteoric and magmatic fluids. Elevated concentrations of elements such as sodium (Na), lithium (Li), and chloride (Cl), as well as different stable isotopes, provide insights into the thermal and geochemical environments of geothermal reservoirs. Based on isotopic analysis oxygen (δ¹⁸O) and hydrogen (δ²H), the most of the geothermal water in the Alpine mountain region of Europe is of meteoric origin (derived from meteoric waters). The isotopic composition can reveal the mixing between meteoric and magmatic water. Intermediate values between GMWL and magmatic water compositions indicate such mixing, helping to understand the fluid dynamics within geothermal systems. This research underlines the importance of integrating geochemical studies in the exploration and management of geothermal resources in tectonically active regions such as the Alps.

References

Adachi, I., & Yamanaka, T. (2024). Isotopic evolutionary track of water due to interaction with rocks and its use for tracing water cycle through the lithosphere. Journal of Hydrology, 628(October 2023). https://doi.org/10.1016/j.jhydrol.2023.130589

Akoteyon, I. S. (2013). Hydrochemical Studies of Ground Water in Parts of Lagos, Southwestern Nigeria. Bulletin of Geography. Physical Geography Series, 6(1), 27–42. https://doi.org/10.2478/bgeo-2013-0002

Arrofi, D., Abu-Mahfouz, I. S., & Prayudi, S. D. (2024). Lithium enrichment in high-enthalpy geothermal system influenced by seawater, Indonesia. Scientific Reports, 14(1), 1–23. https://doi.org/10.1038/s41598-024-74462-w

Cortecci, G., Boschetti, T., Mussi, M., Lameli, C. H., Mucchino, C., & Barbieri, M. (2005). New chemical and original isotopic data on waters from El Tatio geothermal field, northern Chile. Geochemical Journal, 39(6), 547–571. https://doi.org/10.2343/geochemj.39.547

Deon, F., Förster, H. J., Brehme, M., Wiegand, B., Scheytt, T., Moeck, I., Jaya, M. S., & Putriatni, D. J. (2015). Geochemical/hydrochemical evaluation of the geothermal potential of the Lamongan volcanic field (Eastern Java, Indonesia). Geothermal Energy, 3(1), 1–21. https://doi.org/10.1186/s40517-015-0040-6

Doǧan, T., Sumino, H., Nagao, K., & Notsu, K. (2006). Release of mantle helium from forearc region of the Southwest Japan arc. Chemical Geology, 233(3–4), 235–248. https://doi.org/10.1016/j.chemgeo.2006.03.008

Giggenbach, W. F. (1992). Chemical Techniques in Geothermal Exploration. In Chemistry Division (pp. 119–144).

Guo, Q., & Wang, Y. (2012). Geochemistry of hot springs in the Tengchong hydrothermal areas, Southwestern China. Journal of Volcanology and Geothermal Research, 215–216, 61–73. https://doi.org/10.1016/j.jvolgeores.2011.12.003

Harlaux, M., Mercadier, J., Bonzi, W. M. E., Kremer, V., Marignac, C., & Cuney, M. (2017). Geochemical Signature of Magmatic-Hydrothermal Fluids Exsolved from the Beauvoir Rare-Metal Granite (Massif Central, France). Geofluids, 2017. https://doi.org/10.1155/2017/1925817

Hosono, T., Yamada, C., Manga, M., Wang, C. Y., & Tanimizu, M. (2020). Stable isotopes show that earthquakes enhance permeability and release water from mountains. Nature Communications, 11(1), 1–9. https://doi.org/10.1038/s41467-020-16604-y

Hristov, V., Stoyanov, N., Valtchev, S., Kolev, S., & Benderev, A. (2019). Utilization of low enthalpy geothermal energy in Bulgaria. IOP Conference Series: Earth and Environmental Science, 249(1). https://doi.org/10.1088/1755-1315/249/1/012035

Huang, F., & Korai, S. K. (2025). B-Li-Cl Trend Line Can Distinguish The Dominance of Hydrothermal Water and Surface Water: A Case Study of Geothermal in Tengchong, Southwestern China. International Journal of Hydrological and Environmental for Sustainability, 4(1), 42–54. https://doi.org/10.58524/ijhes.v4i1.636

Idroes, R., Yusuf, M., Saiful, S., Alatas, M., Subhan, S., Lala, A., Muslem, M., Suhendra, R., Idroes, G. M., Marwan, M., & Mahlia, T. M. I. (2019). Geochemistry Exploration and Geothermometry. Energies, 12(4442), 2–17. https://doi.org/10.3390/en12234442

Ii, H., Kitagawa, H., Kubohara, T., & Machida, I. (2019). Characteristic of water chemistry for arima type deep thermal water in the Kinokawa River catchment, Kii Peninsula, Japan. International Journal of GEOMATE, 17(62), 158–166. https://doi.org/10.21660/2019.62.7156

Iqbal, M., Juliarka, B. R., Ashuri, W., & Farishi, B. Al. (2019). Hydrogeochemistry of Natar and Cisarua Hot springs in South Lampung, Indonesia. Journal of Geoscience, Engineering, Environment, and Technology, 4(3), 178. https://doi.org/10.25299/jgeet.2019.4.3.4070

Iqbal, M., & Kusumasari, B. A. (2024). Deciphering the Way Ratai geothermal system, Lampung, Indonesia. Geothermics, 119. https://doi.org/10.1016/j.geothermics.2024.102985

Jamal, N., & Singh, N. P. (2018). Identification of fracture zones for groundwater exploration. Groundwater for Sustainable Development, 7, 195–203. https://doi.org/10.1016/j.gsd.2018.05.003

Javino, F., Suratman, S., Pang, Z., Choudhry, M. A., Caranto, J., Ogena, M., & Amnan, I. (2010). Isotope and Geochemical Investigations on Tawau Hot Springs in Sabah, Malaysia. Proceedings World Geothermal Congress, April, 25–29.

Kruger, P., Stoker, A., & Umaña, A. (1977). Radon in geothermal reservoir engineering. Geothermics, 5(1–4), 13–19. https://doi.org/10.1016/0375-6505(77)90004-9

Kusuda, C., Iwamori, H., Nakamura, H., Kazahaya, K., & Morikawa, N. (2014). Arima hot spring waters as a deep-seated brine from subducting slab. Earth, Planets and Space, 66(1), 119. https://doi.org/10.1186/1880-5981-66-119

Li, H., Zhai, M., Zhang, L., et al. (2014). Distribution and geochemical characteristics of siliceous rocks in central China. Scientific World Journal, 2014. https://doi.org/10.1155/2014/780910

Matsubaya, O., Sakai, H., Kusachi, I., & Satake, H. (1973). Hydrogen and oxygen isotopic ratios of Japanese thermal waters. Geochemical Journal, 7(3), 123–151. https://doi.org/10.2343/geochemj.7.123

Meju, M. A., & Le, L. (2002). Geoelectromagnetic exploration for natural resources. Surveys in Geophysics, 23, 133–205.

Mibei, G. (2014). Introduction to Types and Classification of Rocks. Short Course IX on Exploration for Geothermal Resources, 1–12.

Michalski, R. (2010). Environmental applications of ion chromatography. Journal of Chromatographic Science, 48(7), 559–565. https://doi.org/10.1093/chromsci/48.7.559

Millot, R., & Négrel, P. (2007). Multi-isotopic tracing and chemical geothermometry. Chemical Geology, 244(3–4), 664–678. https://doi.org/10.1016/j.chemgeo.2007.07.015

Millot, R., Négrel, P., & Petelet-Giraud, E. (2007). Multi-isotopic approach for geothermal reservoir characterization. Applied Geochemistry, 22(11), 2307–2325. https://doi.org/10.1016/j.apgeochem.2007.04.022

Mook, W. G. (2006). Introduction to Isotope Hydrology. Taylor & Francis Group.

Morikawa, N., Kazahaya, K., Masuda, H., et al. (2008). Relationship between geological structure and helium isotopes. Geochemical Journal, 42(1), 61–74. https://doi.org/10.2343/geochemj.42.61

Négrel, P., Millot, R., Brenot, A., & Bertin, C. (2010). Lithium isotopes as tracers of groundwater circulation. Chemical Geology, 276(1–2), 119–127. https://doi.org/10.1016/j.chemgeo.2010.06.008

Obara, K. (2002). Nonvolcanic deep tremor associated with subduction. Science, 296(5573), 1679–1681. https://doi.org/10.1126/science.1070378

Parrone, D., Ghergo, S., Frollini, E., Rossi, D., & Preziosi, E. (2020). Arsenic-fluoride co-contamination in groundwater. Journal of Geochemical Exploration, 217, 106590. https://doi.org/10.1016/j.gexplo.2020.106590

Purnomo, B. J., Pichler, T., & You, C. F. (2016). Boron isotope variations in geothermal systems on Java. Journal of Volcanology and Geothermal Research, 311, 1–8. https://doi.org/10.1016/j.jvolgeores.2015.12.014

Rafiq, J., Abu-Mahfouz, I. S., Soupios, P., Humphrey, J. D., & Tawabini, B. S. (2024). Hydrochemical characterization of Ain Al-Harrah hot spring. ACS Omega, 9(23), 24807–24818. https://doi.org/10.1021/acsomega.4c01343

Ravikumar, P., & Somashekar, R. K. (2017). Hydrochemical facies characterization of groundwater. Applied Water Science, 7(2), 745–755. https://doi.org/10.1007/s13201-015-0287-x

Rüpke, L., Phipps Morgan, J., & Dixon, J. E. (2006). Implications of subduction rehydration. Geophysical Monograph Series, 168, 263. https://doi.org/10.1029/168GM20

Rybach, L., Wilhelm, J., & Gorhan, H. (2003). Geothermal use of tunnel waters. International Geothermal Conference, 17–23.

Schäffer, R., Sass, I., Heldmann, C. D., & Scheuvens, D. (2018). Geothermal drilling in an alpine karst aquifer. Acta Carsologica, 47(2–3), 139–151. https://doi.org/10.3986/ac.v47i2-3.4963

Taira, A. (2001). Tectonic evolution of the Japanese island arc system. Annual Review of Earth and Planetary Sciences, 29, 109–134. https://doi.org/10.1146/annurev.earth.29.1.109

Utama, H. W., Mulyasari, R., & Said, Y. M. (2021). Geothermal Potential on Sumatra Fault System. JGE, 7(2), 126–137. https://doi.org/10.23960/jge.v7i2.128

Vuataz, F. D. (1983). Hydrology and geochemistry of thermal waters from Switzerland. Journal of Volcanology and Geothermal Research, 19(1–2), 73–97. https://doi.org/10.1016/0377-0273(83)90125-7

Wan, H., Sun, H., Liu, H., & Xiao, Y. (2017). Lithium isotopic geochemistry in subduction zones. Acta Geologica Sinica, 91(2), 688–710. https://doi.org/10.1111/1755-6724.13126

Wu, D., Purnomo, B. J., & Sun, S. (2017). As and Sb speciation in hydrothermal waters. Journal of Geochemical Exploration, 173, 85–91. https://doi.org/10.1016/j.gexplo.2016.12.003

Zhao, Y. Y., Zheng, Y. F., & Chen, F. (2009). Trace element and strontium isotope constraints. Chemical Geology, 265(3–4), 345–362. https://doi.org/10.1016/j.chemgeo.2009.04.015

Downloads

Published

2024-10-20

How to Cite

Anghel, C. V., Domańska, ‪Marta M., & Syväjärvi, M. (2024). Geothermal Waters from the Alpine Mountain Region, Europe: A Comprehensive Geochemical and Isotopic Analysis. International Journal of Hydrological and Environmental for Sustainability, 3(3), 163-173. https://doi.org/10.58524/ijhes.v3i3.533