Application of Major and Trace Elements for Detecting the Origin of Groundwater: Lithium Enrichment in Ain Al-Harrah Hot Spring Influenced by Red Sea, Saudi Arabia

Authors

DOI:

https://doi.org/10.58524/ijhes.v3i3.522

Keywords:

hot spring waters, hydrological tracers, lithium enrichment, major elements, seawater influenced, trace elements

Abstract

Major and trace elements are valuable tracers for understanding the groundwater cycle. In groundwater flow path applications, these elements help delineate groundwater flow paths and identify areas of recharge and discharge. While in geothermal systems, the major and trace elements can indicate the contribution of deep hydrothermal fluids. In this study, we used major and trace elements as a groundwater tracer used to determine the origin of the Ain Al-Harrah hot spring in Saudi Arabia. Water sample data collection was taken from previous studies. In the data collection process, pre-washed 0.5 L polyethylene bottles were used to collect a total of five water samples from Ain Al-Harrah hot spring, Saudi Arabia. To prevent contamination, all samples were stored in a refrigerated room to maintain their chemical composition until the analysis process. The analytical results of the study showed that most of the hot water samples from Ain Al-Harrah hot spring, Saudi Arabia had been influenced by seawater which exceeded the limit value of x = 0.86 in the Na/Cl ratio. In addition, the value of y = 0.1 at the SO4/Cl ratio is the horizontal limit between the two. The interpretation of Cl against Cl/Li also confirms that the hot springs of Ain Al-Harrah, Saudi Arabia have been largely mixed with surface water. In addition, it is likely that the origin of the hot springs of Ain Al-Harrah, Saudi Arabia is also from seawater intrusion from red sea that has undergone mixing by meteoric water.

Author Biography

  • Ahmad Said, Department of Chemistry, King Fahd University of Petroleum and Minerals

     

    Department of Industrial Engineering,
    Sekolah Tinggi Teknologi Cipasung, Indonesia

References

Amita, K., Ohsawa, S., Nishimura, K., Yamada, M., Mishima, T., Kazahaya, K., Morikawa, N., & Hirajima, T. (2014). Origin of saline waters distributed along the Median Tectonic Line in southwest Japan: Hydrogeochemical investigation on possibility of derivation of metamorphic dehydrated fluid from subducting oceanic plate. Journal of Japanese Association of Hydrological Sciences, 44(1), 17–38. https://doi.org/10.4145/jahs.44.17

Anthony, T. B. (2017). Hydrogeochemistry of groundwater within the lateritic profiles over migmatite and pegmatised schist of Ibadan, Nigeria. Journal of Geology and Mining Research, 9(4), 28–42. https://doi.org/10.5897/jgmr2016.0261

Arevalo, R. (2013). Laser Ablation ICP-MS and Laser Fluorination GS-MS. In Treatise on Geochemistry: Second Edition (15th ed., Vol. 15). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-095975-7.01432-7

Arienzo, I., Liotta, M., Brusca, L., D’Antonio, M., Lupone, F., & Cucciniello, C. (2020). Analytical method for lithium isotopes determination by thermal ionization mass spectrometry: A useful tool for hydrogeochemical applications. Water (Switzerland), 12(8). https://doi.org/10.3390/W12082182

Arrofi, D., Abu-Mahfouz, I. S., & Prayudi, S. D. (2024). Lithium enrichment in high-enthalpy geothermal system influenced by seawater, Indonesia. Scientific Reports, 14(1), 1–23. https://doi.org/10.1038/s41598-024-74462-w

Ashadi, A. L., Tezkan, B., Yogeshwar, P., Hanstein, T., Kirmizakis, P., Khogali, A., Chavanidis, K., & Soupios, P. (2024). Magnetotelluric Case Study from Ain Al-Harrah Hot Spring, Al-Lith, Saudi Arabia. Arabian Journal for Science and Engineering, 49(1), 899–912. https://doi.org/10.1007/s13369-023-08293-8

Basaham, A. S., El Sayed, M. A., Ghandour, I. M., & Masuda, H. (2015). Geochemical background for the Saudi Red Sea coastal systems and its implication for future environmental monitoring and assessment. Environmental Earth Sciences, 74(5), 4561–4570. https://doi.org/10.1007/s12665-015-4477-5

Bhat, M. A., Wani, S. A., Singh, V. K., Sahoo, J., Tomar, D., & Sanswal, R. (2018). Journal of Agricultural Science and An Overview of the Assessment of Groundwater Quality for Irrigation. Journal of Agricultural Science and Food Research, 9(1), 1–9.

Chafa, A. T., Chirinda, G. P., & Matope, S. (2022). Design of a real–time water quality monitoring and control system using Internet of Things (IoT). Cogent Engineering, 9(1). https://doi.org/10.1080/23311916.2022.2143054

Clow, D. W., Mast, M. A., Bullen, T. D., & Turk, J. T. (1997). Reactions and Calcium Sources in an Alpine / Subalpine. Water Resources Research, 33(6), 1335–1351.

Gan, F., Han, K., Lan, F., Chen, Y., & Zhang, W. (2017). Multi-geophysical approaches to detect karst channels underground — A case study in Mengzi of Yunnan Province, China. Journal of Applied Geophysics, 136, 91–98. https://doi.org/10.1016/j.jappgeo.2016.10.036

Hartmann, L. A., Hoerlle, G., & Renner, L. C. (2024). Extensive two-tier structure and breccia stockwork formation by hydrothermal processes in the first Paraná lava flow covering the Botucatu paleoerg-turned-Guarani Paleoaquifer. Journal of South American Earth Sciences, 133(May 2023). https://doi.org/10.1016/j.jsames.2023.104734

Hendry, M. J., Wassenaar, L. I., & Kotzer, T. (2000). Chloride and chlorine isotopes (36Cl and δ37Cl) as tracers of solute migration in a thick, clay-rich aquitard system. Water Resources Research, 36(1), 285–296. https://doi.org/10.1029/1999WR900278

Hwang, J. Y., Park, S., Kim, H.-K., Kim, M.-S., Jo, H.-J., Kim, J.-I., Lee, G.-M., Shin, I.-K., & Kim, T.-S. (2017). Hydrochemistry for the Assessment of Groundwater Quality in Korea. Journal of Agricultural Chemistry and Environment, 06(01), 1–29. https://doi.org/10.4236/jacen.2017.61001

Idroes, R., Yusuf, M., Saiful, S., Alatas, M., Subhan, S., Lala, A., Muslem, M., Suhendra, R., Idroes, G, M., Marwan, M., & Mahlia, T, M, I. (2019). Geochemistry Exploration and Geothermometry. Energies MDPI, 12(4442), 2–17.

Iqbal, M., & Kusumasari, B. A. (2024). Deciphering the Way Ratai geothermal system, Lampung, Indonesia: A comprehensive geochemical and isotopic analysis. Geothermics, 119(March). https://doi.org/10.1016/j.geothermics.2024.102985

Jalili, M., Hosseini, M. S., Ehrampoush, M. H., Sarlak, M., Abbasi, F., & Fallahzadeh, R. A. (2019). Use of Water Quality Index and Spatial Analysis to Assess Groundwater Quality for Drinking Purpose in Ardakan, Iran. Journal of Environmental Health and Sustainable Development, 4(3), 834–842. https://doi.org/10.18502/jehsd.v4i3.1500

Jan, F., Min-Allah, N., & Düştegör, D. (2021). Iot based smart water quality monitoring: Recent techniques, trends and challenges for domestic applications. Water (Switzerland), 13(13), 1–37. https://doi.org/10.3390/w13131729

Kortelainen, N. (2011). Isotope tracing in groundwater applications. Special Paper of the Geological Survey of Finland, 2011(49), 279–284.

Kusumayudha, S. B., Lestari, P., & Paripurno, E. T. (2018). Eruption characteristic of the sleeping volcano, Sinabung, North Sumatera, Indonesia, and SMS gateway for disaster early warning system. Indonesian Journal of Geography, 50(1), 70–77. https://doi.org/10.22146/ijg.17574

Li, M., Lou, Z., Zhu, R., Jin, A., & Ye, Y. (2014). Distribution and geochemical characteristics of fluids in Ordovician marine carbonate reservoirs of the Tahe Oilfield. Journal of Earth Science, 25(3), 486–494. https://doi.org/10.1007/s12583-014-0453-3

Li, W., Liu, X. M., & Godfrey, L. V. (2019). Optimisation of Lithium Chromatography for Isotopic Analysis in Geological Reference Materials by MC-ICP-MS. Geostandards and Geoanalytical Research, 43(2), 261–276. https://doi.org/10.1111/ggr.12254

Luo, W., Gao, X., & Zhang, X. (2018). Geochemical processes controlling the groundwater chemistry and fluoride contamination in the yuncheng basin, China—an area with complex hydrogeochemical conditions. PLoS ONE, 13(7), 1–25. https://doi.org/10.1371/journal.pone.0199082

Meju, M. A., & Le, L. (2002). Geoelectromagneticexploration For Natural Resources:Models, Case Studies and Challenges. Surveys in Geophysics, 23, 133–205.

Michalski, R. (2010). Environmental applications of ion chromatography in eastern and central europe. Journal of Chromatographic Science, 48(7), 559–565. https://doi.org/10.1093/chromsci/48.7.559

Michelsen, N., Reshid, M., Siebert, C., Schulz, S., Knöller, K., Weise, S. M., Rausch, R., Al-Saud, M., & Schüth, C. (2015). Isotopic and chemical composition of precipitation in Riyadh, Saudi Arabia. Chemical Geology, 413, 51–62. https://doi.org/10.1016/j.chemgeo.2015.08.001

Millot, R., Hegan, A., & Negrel, P. (2012). Geothermal waters from the Taupo Volcanic Zone, New Zealand: Li, B, and Sr isotopes characterization. Applied Geochemistry, 27, 677–688. https://doi.org/doi:10.1016/j.apgeochem.2011.12.015

Morikawa, N., Kazahaya, K., Takahashi, M., Inamura, A., Takahashi, H. A., Yasuhara, M., Ohwada, M., Sato, T., Nakama, A., Handa, H., Sumino, H., & Nagao, K. (2016). Widespread distribution of ascending fluids transporting mantle helium in the fore-arc region and their upwelling processes: Noble gas and major element composition of deep groundwater in the Kii Peninsula, southwest Japan. Geochimica et Cosmochimica Acta, 182, 173–196. https://doi.org/10.1016/j.gca.2016.03.017

Mousavi Mashhadi, S. K., Yadollahi, H., & Marvian Mashhad, A. (2016). Design and manufacture of TDS measurement and control system for water purification in reverse osmosis by PID fuzzy logic controller with the ability to compensate effects of temperature on measurement. Turkish Journal of Electrical Engineering and Computer Sciences, 24(4), 2589–2608. https://doi.org/10.3906/elk-1402-65

Nazri, M. A. A., Tan, L. W., Kasmin, H., Syafalni, S., & Abustan, I. (2016). Geophysical and Hydrochemical Characteristics of Groundwater at Kerian Irrigation Scheme. IOP Conference Series: Materials Science and Engineering, 136(1). https://doi.org/10.1088/1757-899X/136/1/012070

Négrel, P., Millot, R., Brenot, A., & Bertin, C. (2010). Lithium isotopes as tracers of groundwater circulation in a peat land. Chemical Geology, 276(1–2), 119–127. https://doi.org/10.1016/j.chemgeo.2010.06.008

Oi, T., Ikeda, K., Nakano, M., Ossaka, T., & Ossaka, J. (1996). Boron isotope geochemistry of hot spring waters in Ibusuki and adjacent areas, Kagoshima, Japan. Geochemical Journal, 30(5), 273–287. https://doi.org/10.2343/geochemj.30.273

Rafiq, J., Abu-Mahfouz, I. S., Soupios, P., Humphrey, J. D., & Tawabini, B. S. (2024). Hydrochemical Characterization, Geothermometry, and Origin of Ain Al-Harrah Hot Spring and Its Relationship to Al-Lith Geothermal System, Saudi Arabia. ACS Omega, 9(23), 24807–24818. https://doi.org/10.1021/acsomega.4c01343

Sabir, T. U. R., Farid, A., Harb, M. K., & Kilani, R. (2020). Geophysical investigation using MASW method for geo-hazards under load influence zone of the proposed water storage tanks, a case study from Saudi Arabia. Fifth International Conference on Engineering Geophysics (ICEG), 21–24 October 2019, Al Ain, UAE, April, 288–291. https://doi.org/10.1190/iceg2019-073.1

Stone, A., Inglis, R., Barfod, D., Ickert, R., Hughes, L., Waters, J., Jourdan, A. L., & Alsharekh, A. M. (2022). Hydroclimatic and geochemical palaeoenvironmental records within tufa: A cool-water fluvio-lacustrine tufa system in the Wadi Dabsa volcanic setting, western Saudi Arabia. Sedimentary Geology, 437, 106181. https://doi.org/10.1016/j.sedgeo.2022.106181

Tabei, T., Hashimoto, M., Miyazaki, S., Hirahara, K., Kimata, F., Matsushima, T., Tanaka, T., Eguchi, Y., Takaya, T., Hoso, Y., Ohya, F., & Kato, T. (2002). Subsurface structure and faulting of the Median Tectonic Line, southwest Japan inferred from GPS velocity field. Earth, Planets and Space, 54(11), 1065–1070. https://doi.org/10.1186/BF03353303

Tomascak, P. B. (2004). Developments in the understanding and application of lithium isotopes in the earth and planetary sciences. Reviews in Mineralogy and Geochemistry, 55, 153–195. https://doi.org/10.2138/gsrmg.55.1.153

Umar Kura, N., Firuz Ramli, M., Azmin Sulaiman, W. N., Ibrahim, S., Zaharin Aris, A., & Mustapha, A. (2013). Evaluation of factors influencing the groundwater chemistry in a small tropical Island of Malaysia. International Journal of Environmental Research and Public Health, 10(5), 1861–1881. https://doi.org/10.3390/ijerph10051861

Williams, L. B., & Hervig, R. L. (2004). Boron isotope composition of coals: A potential tracer of organic contaminated fluidsEditorial handling by R.S. Harmon. Applied Geochemistry, 19(10), 1625–1636. https://doi.org/10.1016/j.apgeochem.2004.02.007

Wunder, B., Meixner, A., Romer, R. L., Wirth, R., & Heinrich, W. (2005). The geochemical cycle of boron: Constraints from boron isotope partitioning experiments between mica and fluid. Lithos, 84(3–4), 206–216. https://doi.org/10.1016/j.lithos.2005.02.003

Downloads

Published

2024-10-17

How to Cite

Umam, R., Cengiz, K., & Said, A. (2024). Application of Major and Trace Elements for Detecting the Origin of Groundwater: Lithium Enrichment in Ain Al-Harrah Hot Spring Influenced by Red Sea, Saudi Arabia. International Journal of Hydrological and Environmental for Sustainability, 3(3), 151-162. https://doi.org/10.58524/ijhes.v3i3.522