Geochemical Characteristics of B-Li-Cl Type Waters in Geothermal Area: Implications for the Origin of Tawau Hot Springs, Sabah, Malaysia
DOI:
https://doi.org/10.58524/ijhes.v3i3.511Keywords:
boron, clorine, geochemical characteristics, geothermal, lithium, tawau hot springAbstract
Boron (B), Lithium (L), and Chlorine (Cl) are valuable indicators in geothermal detection due to their unique properties and behavior in hydrothermal systems. Volcanic hot springs are generally believed to originate from meteoric circulation or buried seawater and are controlled by equilibrium exchange with magmatic rocks at high temperatures. In this study, we report the B-Li-Cl geochemical characteristics of Tawau hot springs, in the forearc region of Malaysia. The data has been collected from previous studies that analyzed 8 water samples to determine the levels of 10 dissolved elements or components. We performed data correlation analyses to infer the source materials and origins of the hot springs. In addition, we performed numerical modeling of oxygen and hydrogen isotope fractionation to examine the composition of derived fluids as possible candidates of geofluids. The results suggest that Tawau geothermal originated from deep seawater due to subduction before undergoing magmatisation and alteration processes. This interpretation result has a positive correlation with Li and boron. In addition, the geological conditions in the Sabah region, which has subduction zones from two directions, cause a high probability of seawater or marine sediment contribution into the reservoir before finally coming out in the form of a geothermal fluid phase.References
Acharya, S., Sharma, S. K., & Khandegar, V. (2018). Assessment of groundwater quality by water quality indices for irrigation and drinking in South West Delhi, India. Data in Brief, 18(2018), 2019–2028. https://doi.org/10.1016/j.dib.2018.04.120
Adachi, I., & Yamanaka, T. (2024). Isotopic evolutionary track of water due to interaction with rocks and its use for tracing water cycle through the lithosphere. Journal of Hydrology, 628(October 2023). https://doi.org/10.1016/j.jhydrol.2023.130589
Al-ahmadi, M. E., & El-Fiky, A. A. (2009). Hydrogeochemical evaluation of shallow alluvial aquifer of Wadi Marwani, western Saudi Arabia. Journal of King Saud University - Science, 21(3), 179–190. https://doi.org/10.1016/j.jksus.2009.10.005
Amita, K., Ohsawa, S., Nishimura, K., Yamada, M., Mishima, T., Kazahaya, K., Morikawa, N., & Hirajima, T. (2014). Origin of saline waters distributed along the Median Tectonic Line in southwest Japan: Hydrogeochemical investigation on possibility of derivation of metamorphic dehydrated fluid from subducting oceanic plate. Journal of Japanese Association of Hydrological Sciences, 44(1), 17–38. https://doi.org/10.4145/jahs.44.17
Anuar, M. N. A., Arifin, M. H., Baioumy, H., & Nawawi, M. (2021). A geochemical comparison between volcanic and non-volcanic hot springs from East Malaysia: Implications for their origin and geothermometry. Journal of Asian Earth Sciences, 217(August 2020), 104843. https://doi.org/10.1016/j.jseaes.2021.104843
Arevalo, R. (2013). Laser Ablation ICP-MS and Laser Fluorination GS-MS. In Treatise on Geochemistry: Second Edition (15th ed., Vol. 15). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-095975-7.01432-7
Arienzo, I., Liotta, M., Brusca, L., D’Antonio, M., Lupone, F., & Cucciniello, C. (2020). Analytical method for lithium isotopes determination by thermal ionization mass spectrometry: A useful tool for hydrogeochemical applications. Water (Switzerland), 12(8). https://doi.org/10.3390/W12082182
Arrofi, D., Abu-Mahfouz, I. S., & Prayudi, S. D. (2024). Lithium enrichment in high-enthalpy geothermal system influenced by seawater, Indonesia. Scientific Reports, 14(1), 1–23. https://doi.org/10.1038/s41598-024-74462-w
Asadi, E., Isazadeh, M., Samadianfard, S., Ramli, M. F., Mosavi, A., Nabipour, N., Shamshirband, S., Hajnal, E., & Chau, K. W. (2020). Groundwater quality assessment for sustainable drinking and irrigation. Sustainability (Switzerland), 12(1), 1–13. https://doi.org/10.3390/su12010177
Baba, M. El, Kayastha, P., Huysmans, M., & Smedt, F. De. (2020). Evaluation of the Groundwater Quality Using the Water Quality Index and Geostatistical Analysis in. Water (Switzerland), 12(262), 1–14. https://doi.org/10.3390/w12010262
Coplen, T. (1982). Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle. Eos, Transactions American Geophysical Union, 63(45), 861. https://doi.org/10.1029/eo063i045p00861
Cubadda, F. (2004). Inductively Coupled Plasma-Mass Spectrometry for the Determination of Elements and Elemental Species in Food: A Review. Journal of AOAC International, 87(1), 173–204. https://doi.org/10.1093/jaoac/87.1.173
Deon, F., Förster, H. J., Brehme, M., Wiegand, B., Scheytt, T., Moeck, I., Jaya, M. S., & Putriatni, D. J. (2015). Geochemical/hydrochemical evaluation of the geothermal potential of the Lamongan volcanic field (Eastern Java, Indonesia). Geothermal Energy, 3(1), 1–21. https://doi.org/10.1186/s40517-015-0040-6
Giggenbach, W. F. (1992). Chemical Techniques in Geothermal Exploration. In Chemistry Division (pp. 119–144).
Hendry, M. J., Wassenaar, L. I., & Kotzer, T. (2000). Chloride and chlorine isotopes (36Cl and δ37Cl) as tracers of solute migration in a thick, clay-rich aquitard system. Water Resources Research, 36(1), 285–296. https://doi.org/10.1029/1999WR900278
Hirose, F., Nakajima, J., & Hasegawa, A. (2008). Three-dimensional seismic velocity structure and configuration of the Philippine Sea slab in southwestern Japan estimated by double-difference tomography. Journal of Geophysical Research: Solid Earth, 113(9), 1–26. https://doi.org/10.1029/2007JB005274
Hosono, T., Yamada, C., Manga, M., Wang, C. Y., & Tanimizu, M. (2020). Stable isotopes show that earthquakes enhance permeability and release water from mountains. Nature Communications, 11(1), 1–9. https://doi.org/10.1038/s41467-020-16604-y
Idroes, R., Yusuf, M., Saiful, S., Alatas, M., Subhan, S., Lala, A., Muslem, M., Suhendra, R., Idroes, G. M., Marwan, M., & Mahlia, T. M. I. (2019). Geochemistry Exploration and Geothermometry. Energies, 12(4442), 2–17. https://doi.org/10.3390/en12234442
Iwamori, H. (2007). Transportation of H₂O beneath the Japan arcs and its implications for global water circulation. Chemical Geology, 239(3–4), 182–198. https://doi.org/10.1016/j.chemgeo.2006.08.011
Jan, F., Min-Allah, N., & Düştegör, D. (2021). IoT based smart water quality monitoring: Recent techniques, trends and challenges for domestic applications. Water (Switzerland), 13(13), 1–37. https://doi.org/10.3390/w13131729
Javino, F., Suratman, S., Pang, Z., Choudhry, M. A., Caranto, J., Ogena, M., & Amnan, I. (2010). Isotope and Geochemical Investigations on Tawau Hot Springs in Sabah, Malaysia. Proceedings World Geothermal Congress, April, 25–29.
Kazahaya, K., Takahashi, M., Yasuhara, M., Nishio, Y., Inamura, A., Morikawa, N., Sato, T., Takahashi, H. A., Kitaoka, K., Ohsawa, S., Oyama, Y., Ohwada, M., Tsukamoto, H., Horiguchi, K., Tosaki, Y., & Kirita, T. (2014). Spatial distribution and feature of slab-related deep-seated fluid in SW Japan. The Japan Society of Hydrology and Water Resources, 44(1), 3–16.
Kusuda, C., Iwamori, H., Nakamura, H., Kazahaya, K., & Morikawa, N. (2014). Arima hot spring waters as a deep-seated brine from subducting slab. Earth, Planets and Space, 66(1), 119. https://doi.org/10.1186/1880-5981-66-119
Kusuhara, F., Kazahaya, K., Morikawa, N., Yasuhara, M., Tanaka, H., Takahashi, M., & Tosaki, Y. (2020). Original composition and formation process of slab-derived deep brine from Kashio mineral spring in central Japan. Earth, Planets and Space, 72(1). https://doi.org/10.1186/s40623-020-01225-y
Li, W., Liu, X. M., & Godfrey, L. V. (2019). Optimisation of Lithium Chromatography for Isotopic Analysis in Geological Reference Materials by MC-ICP-MS. Geostandards and Geoanalytical Research, 43(2), 261–276. https://doi.org/10.1111/ggr.12254
Masuda, H., Sakai, H., & Chiba, H. (1985). Geochemical in Arima and characteristics its vicinity of Na-Ca-Cl-HCO₃ in the western Kinki type district waters Japan. Geochemical Journal, 19(1), 149–162.
McConnell, M. C., Thunell, R. C., Lorenzoni, L., Astor, Y., Wright, J. D., & Fairbanks, R. (2009). Seasonal variability in the salinity and oxygen isotopic composition of seawater from the Cariaco Basin, Venezuela. Geochemistry, Geophysics, Geosystems, 10(6). https://doi.org/10.1029/2008GC002035
Meibom, A., Anderson, D. L., Sleep, N. H., Frei, R., Chamberlain, C. P., Hren, M. T., & Wooden, J. L. (2003). Are high ³He/⁴He ratios in oceanic basalts an indicator of deep-mantle plume components? Earth and Planetary Science Letters, 208(3–4), 197–204. https://doi.org/10.1016/S0012-821X(03)00038-4
Meredith, K., Moriguti, T., Tomascak, P., Hollins, S., & Nakamura, E. (2013). The lithium, boron and strontium isotopic systematics of groundwaters from an arid aquifer system. Geochimica et Cosmochimica Acta, 112, 20–31. https://doi.org/10.1016/j.gca.2013.02.022
Millot, R., Guerrot, C., & Vigier, N. (2004). Accurate and high-precision measurement of lithium isotopes in two reference materials by MC-ICP-MS. Geostandards and Geoanalytical Research, 28(1), 153–159. https://doi.org/10.1111/j.1751-908X.2004.tb01052.x
Millot, R., Hegan, A., & Négrel, P. (2012). Geothermal waters from the Taupo Volcanic Zone, New Zealand. Applied Geochemistry, 27(3), 677–688. https://doi.org/10.1016/j.apgeochem.2011.12.015
Millot, R., Négrel, P., & Petelet-Giraud, E. (2007). Multi-isotopic approach for geothermal reservoir characterization. Applied Geochemistry, 22(11), 2307–2325. https://doi.org/10.1016/j.apgeochem.2007.04.022
Mook, W. G. (2006). Introduction to Isotope Hydrology. Taylor & Francis Group.
Morikawa, N., Kazahaya, K., Takahashi, M., et al. (2016). Widespread distribution of ascending fluids transporting mantle helium. Geochimica et Cosmochimica Acta, 182, 173–196. https://doi.org/10.1016/j.gca.2016.03.017
Nakajima, J., & Hasegawa, A. (2007). Subduction of the Philippine Sea plate beneath southwestern Japan. Journal of Geophysical Research: Solid Earth, 112(8). https://doi.org/10.1029/2006JB004770
Nazri, M. A. A., Tan, L. W., Kasmin, H., Syafalni, S., & Abustan, I. (2016). Geophysical and Hydrochemical Characteristics of Groundwater. IOP Conference Series: Materials Science and Engineering, 136(1). https://doi.org/10.1088/1757-899X/136/1/012070
Négrel, P., Millot, R., Brenot, A., & Bertin, C. (2010). Lithium isotopes as tracers of groundwater circulation. Chemical Geology, 276(1–2), 119–127. https://doi.org/10.1016/j.chemgeo.2010.06.008
Nukman, M., & Hochstein, M. P. (2019). The Sipoholon Geothermal Field. Journal of Asian Earth Sciences, 170, 316–328. https://doi.org/10.1016/j.jseaes.2018.11.007
Oi, T., Ikeda, K., Nakano, M., Ossaka, T., & Ossaka, J. (1996). Boron isotope geochemistry of hot spring waters. Geochemical Journal, 30(5), 273–287. https://doi.org/10.2343/geochemj.30.273
Sano, Y., & Nakajima, J. (2008). Geographical distribution of ³He/⁴He ratios in Japan. Geochemical Journal, 42(1), 51–60. https://doi.org/10.2343/geochemj.42.51
Singh, K. K., Tewari, G., & Kumar, S. (2020). Evaluation of Groundwater Quality for Irrigation. Journal of Chemistry, 2020. https://doi.org/10.1155/2020/6924026
Stern, R. J. (2002). Subduction zones. Reviews of Geophysics, 40(4), 3–38. https://doi.org/10.1029/2001RG000108
Tabei, T., Hashimoto, M., Miyazaki, S., et al. (2002). Subsurface structure of the Median Tectonic Line. Earth, Planets and Space, 54(11), 1065–1070.
Tang, Y. J., Zhang, H. F., & Ying, J. F. (2007). Review of the lithium isotope system. International Geology Review, 49(4), 374–388. https://doi.org/10.2747/0020-6814.49.4.374
Toki, T., Heshiki, S., & Shinjo, R. (2016). Improved Method for Seawater Lithium Isotopic Ratio. Bulletin of the Society of Sea Water Science, Japan, 326–331.
Tongkul, F. (2017). Active tectonics in Sabah. Bulletin of the Geological Society of Malaysia, 64, 27–36. https://doi.org/10.7186/bgsm64201703
Tsay, A., Zajacz, Z., Ulmer, P., & Sanchez-Valle, C. (2017). Mobility of major and trace elements. Geochimica et Cosmochimica Acta, 198, 70–91. https://doi.org/10.1016/j.gca.2016.10.038
Umam, R., Tanimizu, M., Nakamura, H., et al. (2022). Lithium isotope systematics of Arima hot spring waters. Geochemical Journal, 56(5), E8–E17. https://doi.org/10.2343/geochemj.GJ22015
Utama, H. W., Mulyasari, R., & Said, Y. M. (2021). Geothermal Potential on Sumatra Fault System. JGE, 7(2), 126–137. https://doi.org/10.23960/jge.v7i2.128
Williams, L. B., & Hervig, R. L. (2004). Boron isotope composition of coals. Applied Geochemistry, 19(10), 1625–1636. https://doi.org/10.1016/j.apgeochem.2004.02.007
Wunder, B., Meixner, A., Romer, R. L., Wirth, R., & Heinrich, W. (2005). The geochemical cycle of boron. Lithos, 84(3–4), 206–216. https://doi.org/10.1016/j.lithos.2005.02.003
Xu, J., & Kono, Y. (2002). Geometry of slab in the Nankai trough. Earth, Planets and Space, 54(7), 733–742.
Yamanaka, T., & Adachi, I. (2024). Hot springs reflect the flooding of slab-derived water. Communications Earth and Environment, 5(1), 1–8. https://doi.org/10.1038/s43247-024-01606-1
Yamanaka, T., Makino, Y., Wakiyama, Y., et al. (2015). Modeled precipitation isoscapes. Hydrological Research Letters, 9(4), 118–124. https://doi.org/10.3178/hrl.9.118
You, C. F., Castillo, P. R., Gieskes, J. M., Chan, L. H., & Spivack, A. J. (1996). Trace element behavior in hydrothermal experiments. Earth and Planetary Science Letters, 140(1–4), 41–52. https://doi.org/10.1016/0012-821X(96)00049-0
Zhao, Y. Y., Zheng, Y. F., & Chen, F. (2009). Trace element and strontium isotope constraints. Chemical Geology, 265(3–4), 345–362. https://doi.org/10.1016/j.chemgeo.2009.04.015
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Foundae (Foundation of Advanced Education)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
