Assessment of Hydrochemical Characteristics and Water Quality as Monitoring of Environmental Conditions in Shallow Groundwater and Kinokawa River, Wakayama Prefecture, Japan
DOI:
https://doi.org/10.58524/ijhes.v3i2.481Keywords:
river water, hydrochemistry, shallow groundwater, water quality, geochemical characterization, inductively coupled plasma-mass spectrometryAbstract
Shallow groundwater and river water problems in each country are caused by various factors such as natural factors such as natural disasters, human activity factors such as waste pollution, and others. In this study, we analysed the hydrochemical characteristics of river water to determine the water quality of shallow groundwater and Kinokawa river in Wakayama region of Japan. Shallow groundwater and river water samples were taken along the Kinokawa river at a total of 86 points. The water samples were analysed using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). In this case, we investigated physicochemical parameters such as total dissolved solids which mainly depend on the concentration of major ions such as Ca, Mg, Na, K, Cl, Li, HCO3, NO3 and SO4 which are used to characterise river water quality. The results of this study show that the calculated values of SAR, PI, Na%, MH and RSC indicate good groundwater use for irrigation purposes. Comparison of geochemical data showed that more than 75% SAR, 94% PI, 80% %Na, and 97% MH indicated a good environmental condition category and the river water can be used for irrigation purposes. The water quality information presented in this paper will be useful for sustainable management of water resources in the study area.References
Adejumo, R. O., Adagunodo, T. A., Bility, H., Lukman, A. F., & Isibor, P. O. (2018). Physicochemical constituents of groundwater and its quality in crystalline bedrock, Nigeria. International Journal of Civil Engineering and Technology, 9(8), 887–903.
Adimalla, N. (2013). International Journal of Research in Chemistry and Environment Groundwater and Its assessment for Irrigation purpose in Hanmakonda Area , Available online at : www.ijrce.org. 3(2), 196–200.
Adimalla, N., & Venkatayogi, S. (2018). Geochemical characterization and evaluation of groundwater suitability for domestic and agricultural utility in semi-arid region of Basara, Telangana State, South India. Applied Water Science, 8(1), 44. https://doi.org/10.1007/s13201-018-0682-1
Al-ahmadi, M. E., & El-Fiky, A. A. (2009). Hydrogeochemical evaluation of shallow alluvial aquifer of Wadi Marwani, western Saudi Arabia. Journal of King Saud University - Science, 21(3), 179–190. https://doi.org/10.1016/j.jksus.2009.10.005
Al-Khashman, O. A., Alnawafleh, H. M., Jrai, A. M. A., & Al-Muhtaseb, A. H. (2017). Monitoring and Assessing of Spring Water Quality in Southwestern Basin of Jordan. Open Journal of Modern Hydrology, 07(04), 331–349. https://doi.org/10.4236/ojmh.2017.74019
Amita, K., Ohsawa, S., Nishimura, K., Yamada, M., Mishima, T., Kazahaya, K., Morikawa, N., & Hirajima, T. (2014). Origin of saline waters distributed along the Median Tectonic Line in southwest Japan: Hydrogeochemical investigation on possibility of derivation of metamorphic dehydrated fluid from subducting oceanic plate. Journal of Japanese Association of Hydrological Sciences, 44(1), 17–38. https://doi.org/10.4145/jahs.44.17
Bartram, J., & Ballance, R. (1996). Water Quality Monitoring - A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes. In United Nations Environment Programme and the World Health Organization (UNEP/WHO) (Vol. 16, Issue 48).
Calligaris, C., Mezga, K., Slejko, F. F., Urbanc, J., & Zini, L. (2018). Groundwater characterization by means of conservative (δ18O and δ2H) and non-conservative (87Sr/86Sr) isotopic values: The classical karst region aquifer case (Italy–Slovenia). Geosciences (Switzerland), 8(9), 1–25. https://doi.org/10.3390/geosciences8090321
Chae, G. T., Yun, S. T., Kim, K., & Mayer, B. (2006). Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: water-rock interaction and hydrologic mixing. Journal of Hydrology, 321(1–4), 326–343. https://doi.org/10.1016/j.jhydrol.2005.08.006
Chafa, A. T., Chirinda, G. P., & Matope, S. (2022). Design of a real–time water quality monitoring and control system using Internet of Things (IoT). Cogent Engineering, 9(1). https://doi.org/10.1080/23311916.2022.2143054
Chandrasekar, N., Selvakumar, S., Srinivas, Y., John Wilson, J. S., Simon Peter, T., & Magesh, N. S. (2014). Hydrogeochemical assessment of groundwater quality along the coastal aquifers of southern Tamil Nadu, India. Environmental Earth Sciences, 71(11), 4739–4750. https://doi.org/10.1007/s12665-013-2864-3
de Andrade, E. M., Palácio, H. A. Q., Souza, I. H., de Oliveira Leão, R. A., & Guerreiro, M. J. (2008). Land use effects in groundwater composition of an alluvial aquifer (Trussu River, Brazil) by multivariate techniques. Environmental Research, 106(2), 170–177. https://doi.org/10.1016/j.envres.2007.10.008
de Jong, K., Kurimoto, C., & Ruffet, G. (2009). Triassic 40Ar/39Ar ages from the Sakaigawa unit, Kii Peninsula, Japan: Implications for possible merger of the Central Asian Orogenic Belt with large-scale tectonic systems of the East Asian margin. International Journal of Earth Sciences, 98(6), 1529–1556. https://doi.org/10.1007/s00531-008-0340-1
Doǧan, T., Sumino, H., Nagao, K., & Notsu, K. (2006). Release of mantle helium from forearc region of the Southwest Japan arc. Chemical Geology, 233(3–4), 235–248. https://doi.org/10.1016/j.chemgeo.2006.03.008
Gordon, B., Callan, P., & Vickers, C. (2008). WHO guidelines for drinking-water quality. WHO Chronicle, 38(3), 564. https://doi.org/10.1016/S1462-0758(00)00006-6
Haerudin, N., Fitriawan, H., Siska, D., & Farid, M. (2019). Earthquake Disaster Mitigation Mapping By Modeling Of Land Layer And Site Effect Zone. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 08(1), 53–67. https://doi.org/10.24042/jipfalbiruni.v8i1.3705
Hong, W. J., Shamsuddin, N., Abas, E., Apong, R. A., Masri, Z., Suhaimi, H., Gödeke, S. H., & Noh, M. N. A. (2021). Water quality monitoring with arduino based sensors. Environments - MDPI, 8(1), 1–15. https://doi.org/10.3390/environments8010006
Hwang, J. Y., Park, S., Kim, H.-K., Kim, M.-S., Jo, H.-J., Kim, J.-I., Lee, G.-M., Shin, I.-K., & Kim, T.-S. (2017). Hydrochemistry for the Assessment of Groundwater Quality in Korea. Journal of Agricultural Chemistry and Environment, 06(01), 1–29. https://doi.org/10.4236/jacen.2017.61001
Ighalo, J. O., Adeniyi, A. G., & Marques, G. (2021). Internet of things for water quality monitoring and assessment: A comprehensive review. Studies in Computational Intelligence, 912(September), 245–259. https://doi.org/10.1007/978-3-030-51920-9_13
Ii, H., Kitagawa, H., Kubohara, T., & Machida, I. (2019). Characteristic of water chemistry for arima type deep thermal water in the Kinokawa River catchment, Kii Peninsula, Japan. International Journal of GEOMATE, 17(62), 158–166. https://doi.org/10.21660/2019.62.7156
Jalili, M., Hosseini, M. S., Ehrampoush, M. H., Sarlak, M., Abbasi, F., & Fallahzadeh, R. A. (2019). Use of Water Quality Index and Spatial Analysis to Assess Groundwater Quality for Drinking Purpose in Ardakan, Iran. Journal of Environmental Health and Sustainable Development, 4(3), 834–842. https://doi.org/10.18502/jehsd.v4i3.1500
Jan, F., Min-Allah, N., & Düştegör, D. (2021). Iot based smart water quality monitoring: Recent techniques, trends and challenges for domestic applications. Water (Switzerland), 13(13), 1–37. https://doi.org/10.3390/w13131729
Jha, M. K., Shekhar, A., & Jenifer, M. A. (2020). Assessing groundwater quality for drinking water supply using hybrid fuzzy-GIS-based water quality index. Water Research, 179, 115867. https://doi.org/10.1016/j.watres.2020.115867
Jomori, Y., Takeuchi, M., Minami, M., Ohta, A., & Imai, N. (2013). Spatial distribution of 87Sr/86Sr ratios of stream sediments in Shikoku Island and the Kii Peninsula, Southwest Japan. Geochemical Journal, 47(3), 321–335. https://doi.org/10.2343/geochemj.2.0248
Kasayanond, A., Umam, R., & Jermsittiparsert, K. (2019). Environmental Sustainability and its Growth in Malaysia by Elaborating the Green Economy and Environmental Efficiency. International Journal of Energy Economics and Policy, 9(5), 465–473. https://doi.org/https://doi.org/10.32479/ijeep.8310
Keith David Todd. (2005). Hydrology_Groundwater_Hydrology_-_David_K._Todd_(2005)-libre.pdf (B. Zobrist (ed.); Third). John Wiley & Sons.
Kimura, K. (1990). Formation Mechanism of High Sodium Bicarbonate Groundwater in Landslide Areas in the Kobe Group. Journal of Groundwater Hydrology, 32(1), 5–16. https://doi.org/10.5917/jagh1987.32.5
Kumar, S. K., Rammohan, V., Sahayam, J. D., & Jeevanandam, M. (2009). Assessment of groundwater quality and hydrogeochemistry of Manimuktha River basin, Tamil Nadu, India. Environmental Monitoring and Assessment, 159(1–4), 341–351. https://doi.org/10.1007/s10661-008-0633-7
Lakshmikantha, V., Hiriyannagowda, A., Manjunath, A., Patted, A., Basavaiah, J., & Anthony, A. A. (2021). IoT based smart water quality monitoring system. Global Transitions Proceedings, 2(2), 181–186. https://doi.org/10.1016/j.gltp.2021.08.062
Luo, W., Gao, X., & Zhang, X. (2018). Geochemical processes controlling the groundwater chemistry and fluoride contamination in the yuncheng basin, China—an area with complex hydrogeochemical conditions. PLoS ONE, 13(7), 1–25. https://doi.org/10.1371/journal.pone.0199082
Morikawa, N., Kazahaya, K., Takahashi, M., Inamura, A., Takahashi, H. A., Yasuhara, M., Ohwada, M., Sato, T., Nakama, A., Handa, H., Sumino, H., & Nagao, K. (2016). Widespread distribution of ascending fluids transporting mantle helium in the fore-arc region and their upwelling processes: Noble gas and major element composition of deep groundwater in the Kii Peninsula, southwest Japan. Geochimica et Cosmochimica Acta, 182, 173–196. https://doi.org/10.1016/j.gca.2016.03.017
Moustafa El Baba, Prabin Kayastha, Marijke Huysmans, F. D. S. (2020). Evaluation of the Groundwater Quality Using the Water Quality Index and Geostatistical Analysis in. Water (Switzerland), 12(262), 1–14. https://cgspace.cgiar.org/handle/10568/75633%0Apapers3://publication/uuid/1F44F90C-A3AD-4202-B9EE-
EDB184F85B37%0Ahttp://dx.doi.org/10.1016/j.renene.2010.11.035
Mutri, M. A., Saputra, A. R. A., Alinursafa, I., Ahmed, A. N., Yafouz, A., & El-Shafie, A. (2024). Smart system for water quality monitoring utilizing long-range-based Internet of Things. Applied Water Science, 14(4). https://doi.org/10.1007/s13201-024-02128-z
O., K. M., E., A. K., A., O. O., & T., I. A. (2014). Physico-chemical characteristics of surface and groundwater in Obajana and its environs in Kogi state, Central Nigeria. African Journal of Environmental Science and Technology, 8(9), 521–531. https://doi.org/10.5897/ajest2014.1708
Paital, B. (2015). Mass Spectrophotometry: An Advanced Technique in Biomedical Sciences. Advanced Techniques in Biology & Medicine, 4(3). https://doi.org/10.4172/2379-1764.1000182
Paper, T. (n.d.). Trends in groundwater pollution :
Parrone, D., Ghergo, S., Frollini, E., Rossi, D., & Preziosi, E. (2020). Arsenic-fluoride co-contamination in groundwater: Background and anomalies in a volcanic-sedimentary aquifer in central Italy. Journal of Geochemical Exploration, 217(March), 106590. https://doi.org/10.1016/j.gexplo.2020.106590
Pasika, S., & Gandla, S. T. (2020). Smart water quality monitoring system with cost-effective using IoT. Heliyon, 6(7), e04096. https://doi.org/10.1016/j.heliyon.2020.e04096
Pazand, K., & Pazand, K. (2020). Chemical characteristics of groundwater in Ardabil region, Iran. Ecofeminism and Climate Change, 1(3), 141–149. https://doi.org/10.1108/efcc-05-2020-0013
Selvakumar, S., Ramkumar, K., Chandrasekar, N., Magesh, N. S., & Kaliraj, S. (2017). Groundwater quality and its suitability for drinking and irrigational use in the Southern Tiruchirappalli district, Tamil Nadu, India. Applied Water Science, 7(1), 411–420. https://doi.org/10.1007/s13201-014-0256-9
Sujitapan, C., Kendall, J. M., Chambers, J. E., & Yordkayhun, S. (2024). Landslide assessment through integrated geoelectrical and seismic methods: A case study in Thungsong site, southern Thailand.
Heliyon, 10(2). https://doi.org/10.1016/j.heliyon.2024.e24660
Tabei, T., Hashimoto, M., Miyazaki, S., Hirahara, K., Kimata, F., Matsushima, T., Tanaka, T., Eguchi, Y., Takaya, T., Hoso, Y., Ohya, F., & Kato, T. (2002). Subsurface structure and faulting of the Median Tectonic Line, southwest Japan inferred from GPS velocity field. Earth, Planets and Space, 54(11), 1065–1070. https://doi.org/10.1186/BF03353303
Umam, R., Tanimizu, M., Nakamura, H., Nishio, Y., Nakai, R., Sugimoto, N., Mori, Y., Kobayashi, Y., Ito, A., Wakaki, S., Nagaishi, K., & Ishikawa, T. (2022). Lithium isotope systematics of Arima hot spring waters and groundwaters in Kii Peninsula. Geochemical Journal, 56(5), E8–E17. https://doi.org/10.2343/geochemj.GJ22015
Umar Kura, N., Firuz Ramli, M., Azmin Sulaiman, W. N., Ibrahim, S., Zaharin Aris, A., & Mustapha, A. (2013). Evaluation of factors influencing the groundwater chemistry in a small tropical Island of Malaysia. International Journal of Environmental Research and Public Health, 10(5), 1861–1881. https://doi.org/10.3390/ijerph10051861
Wilcox, L. V. (1955). Classification and Use of Irrigation Waters. 969, 1–19. https://doi.org/USDA Circular No. 969.
Yu, L., Rozemeijer, J., Van Breukelen, B. M., Ouboter, M., Van Der
Vlugt, C., & Broers, H. P. (2018). Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: Monitoring the greater Amsterdam area. Hydrology and Earth System Sciences, 22(1), 487–508. https://doi.org/10.5194/hess-22-487-2018
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Foundae (Foundation of Advanced Education)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
