Identification of Groundwater Aquifers Using Geoelectric Methods with Schlumberger Configuration in Peatland Areas, West Kalimantan, Indonesia

Authors

  • Rasmi Rasmi Departement of Physics, Universitas Tanjungpura
  • Yuris Sutanto Departement of Physics, Universitas Tanjungpura
  • Radhitya Perdhana Departement of Geophysics, Universitas Tanjungpura
  • Muliadi Muliadi Departement of Geophysics, Universitas Tanjungpura
  • Muhardi Muhardi Departement of Geophysics, Universitas Tanjungpura
  • Mahmuddin Marbun Department of Mechanical Engineering, Universitas Teuku Umar
  • Amir Machmud Graduate Institute of Environmental Engineering, National Central University
  • Elok Surya Pratiwi Department of Geography, National Taiwan Normal University

DOI:

https://doi.org/10.58524/ijhes.v3i1.388

Keywords:

geoelectric, groundwater aquifers, peatland areas, resistivity, schlumberger

Abstract

The geoelectric-resistivity method with Schlumberger configuration is commonly used for groundwater exploration. This method helps identify changes in the resistivity of rock layers beneath the Earth's surface by flowing direct current (DC). In this research, geoelectric-resistivity was used to search for the existence of groundwater aquifers in water crisis areas with peat soil structures. In addition, this research aims to determine the depth of the aquifer layer based on resistivity values below the surface and  to identify variations in resistivity values below the surface. The method used in this research was the Schlumberger configuration resistivity geoelectric method with 4 measurement points, each with  a stretch length of 500 m . The research results show that the subsurface resistivity value in the Parit Haji Muksin II area is 2.69 Ohm m to 264 Ohm m. The unconfined aquifer at the research location was found at point 1 and point 2 at a depth of 3.94 m to 35.5 m, while the confined aquifer was found at points 3 and 4 at a depth of 13.6 m to 61.8 m. This study indicates the presence of potential groundwater resources in tropical peatlands, highlighting the necessity for further comprehensive research to ensure their sustainable utilization in the future.

References

Abidin, H. Z., Andreas, H., Gumilar, I., Fukuda, Y., Pohan, Y. E., and Deguchi, T. (2011). Land subsidence of Jakarta (Indonesia) and its relation with urban development. Natural Hazards, 59(3), 1753–1771. https://doi.org/10.1007/s11069-011-9866-9

Aizebeokhai, A. P., and Oyeyemi, K. D. (2015). Application of geoelectrical resistivity imaging and VLF-EM for subsurface characterization in a sedimentary terrain, Southwestern Nigeria. Arabian Journal of Geosciences, 8(6), 4083–4099. https://doi.org/10.1007/s12517-014-1482-z

Al-ahmadi, M. E., and El-Fiky, A. A. (2009). Hydrogeochemical evaluation of shallow alluvial aquifer of Wadi Marwani, western Saudi Arabia. Journal of King Saud University - Science, 21(3), 179–190. https://doi.org/10.1016/j.jksus.2009.10.005

Anggereni, S., and Ikbal, M. S. (2018). Analysis of Physics Laboratory Management at The Northern Region of Makassar’s State Senior High Schools By Standard of Facilities and Infrastructure. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 7(1), 41. https://doi.org/10.24042/jipfalbiruni.v7i1.2329

Bott, L. M., Schöne, T., Illigner, J., Haghshenas Haghighi, M., Gisevius, K., and Braun, B. (2021). Land subsidence in Jakarta and Semarang Bay – The relationship between physical processes, risk perception, and household adaptation. Ocean and Coastal Management, 211. https://doi.org/10.1016/j.ocecoaman.2021.105775

Brindha, K., and Elango, L. (2012). Groundwater quality zonation in a shallow weathered rock aquifer using GIS. Geo-Spatial Information Science, 15(2), 95–104. https://doi.org/10.1080/10095020.2012.714655

Custodio, E. (2015). Trends In Groundwater Pollution: Loss Of Groundwater Quality & Related Services. Technical University of Catalonia.

FAO. (2016). Thematic Papers on Groundwater. In Groundwater Governance – A Global Framework for Action.

Fatchurohman, H., Adji, T. N., Haryono, E., and Wijayanti, P. (2018). Baseflow index assessment and master recession curve analysis for karst water management in Kakap Spring, Gunung Sewu. IOP Conference Series: Earth and Environmental Science, 148(1). https://doi.org/10.1088/1755-1315/148/1/012029

Gordon, B., Callan, P., and Vickers, C. (2008). WHO guidelines for drinking-water quality. WHO Chronicle, 38(3), 564. https://doi.org/10.1016/S1462-0758(00)00006-6

Handayani, P. M., and Puspasari, P. (2020). Learning From Palu: Rebuiding A Better City in The Aftermath of Natural Disaster. Jurnal Pertahanan, 6(3), 442–457.

Kamiya, T., and Hosono, H. (2010). Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Materials, 2(1), 15–22. https://doi.org/10.1038/asiamat.2010.5

Li, J., Zhou, Q., and Campos, L. C. (2018). The application of GAC sandwich slow sand filtration to remove pharmaceutical and personal care products. Science of the Total Environment, 635, 1182–1190. https://doi.org/10.1016/j.scitotenv.2018.04.198

Meijaard, E., Dennis, R. A., Saputra, B. K., Draugelis, G. J., Qadir, M. C. A., and Garnier, S. (2019). Rapid Environmental and Social Assessment of Geothermal Power Development in Conservation Forest of Indonesia. Proceedings World Geothermal Congress 2020 Reykjavik, Iceland, April 26 – May 2, 2020, August, 1–12.

Négrel, P., Millot, R., Brenot, A., and Bertin, C. (2010). Lithium isotopes as tracers of groundwater circulation in a peat land. Chemical Geology, 276(1–2), 119–127. https://doi.org/10.1016/j.chemgeo.2010.06.008

Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., and Hosono, H. (2004). Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 432(7016), 488–492. https://doi.org/10.1038/nature03090

Poitrasson, F., Dundas, S. H., Toutain, J. P., Munoz, M., and Rigo, A. (1999). Earthquake-related elemental and isotopic lead anomaly in a springwater. Earth and Planetary Science Letters, 169(3–4), 269–276. https://doi.org/10.1016/S0012-821X(99)00085-0

Prabowo, A., Hartono, H., and Kaeni, O. (2022). Analisis Potensi Air Tanah Menggunakan Metode Vertical Electrical Sounding (Ves) Di Kelurahan Hargomulyo. JGE (Jurnal Geofisika Eksplorasi), 8(2), 81–92. https://doi.org/10.23960/jge.v8i2.189

Pratiwi, E. S., Sartohadi, J., and Wahyudi. (2019). Geoelectrical Prediction for Sliding Plane Layers of Rotational Landslide at the Volcanic Transitional Landscapes in Indonesia. IOP Conference Series: Earth and Environmental Science, 286(1). https://doi.org/10.1088/1755-1315/286/1/012028

Sabara, Z., Anwar, A., Yani, S., Prianto, K., Junaidi, R., Umam, R., and Prastowo, R. (2022). Activated Carbon and Coconut Coir with the Incorporation of ABR System as Greywater Filter?: The Implications for Wastewater Treatment. Sustainability (Switzerland), 14(2), 1026. https://doi.org/https://doi.org/10.3390/su14021026

Sadjab, B. A., Indrayana, I. P. T., Iwamony, S., and Umam, R. (2020). Investigation of The Distribution and Fe Content of Iron Sand at Wari Ino Beach Tobelo Using Resistivity Method with Werner-Schlumberger Configuration. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 9(1), 141–160. https://doi.org/10.24042/jipfalbiruni.v9i1.5394

Saparun, M., Akbar, R., Marbun, M., Dixit, A., and Saxena, A. (2022). Application of Induced Polarization and Resistivity to the Determination of the Location of Minerals in Extrusive Rock Area , Southern Mountains of Java , Indonesia. 1(3), 108–119.

Satriani, A., Loperte, A., Imbrenda, V., and Lapenna, V. (2012). Geoelectrical surveys for characterization of the coastal saltwater intrusion in metapontum forest reserve (Southern Italy). International Journal of Geophysics, 2012. https://doi.org/10.1155/2012/238478

Savira, F., and Suharsono, Y. (2013). Information on Conductivity Measurement. Journal of Chemical Information and Modeling, 01(01), 1689–1699.

Sudirman, Trisutomo, S., Barkey, R. A., and Ali, M. (2018). Watershed Identification and Its Effect Toward Flood (Case Study: Makassar City). International Journal of Advanced Research, 6(5), 513–519. https://doi.org/10.21474/ijar01/7059

Team, A. D. (2016). Country Water assessment Indonesia Country Water assessment. www.adb.org

Tsunomori, F., Shimodate, T., Ide, T., and Tanaka, H. (2017). Radon concentration distributions in shallow and deep groundwater around the Tachikawa fault zone. Journal of Environmental Radioactivity, 172, 106–112. https://doi.org/10.1016/j.jenvrad.2017.03.009

You, C. F., Castillo, P. R., Gieskes, J. M., Chan, L. H., and Spivack, A. J. (1996). Trace element behavior in hydrothermal experiments: Implications for fluid processes at shallow depths in subduction zones. Earth and Planetary Science Letters, 140(1–4), 41–52. https://doi.org/10.1016/0012-821X(96)00049-0

Zoysa, R. S. De, Schöne, T., Herbeck, J., Illigner, J., Haghighi, M., Simarmata, H., Porio, E., Rovere, A., and Hornidge, A. K. (2021). The “wickedness” of governing land subsidence: Policy perspectives from urban southeast Asia. PLoS ONE, 16(6 June), 1–25. https://doi.org/10.1371/journal.pone.0250208

Downloads

Published

2024-05-09

How to Cite

Rasmi, R., Sutanto, Y., Perdhana, R., Muliadi, M., Muhardi, M., Marbun, M., Machmud, A., & Pratiwi, E. S. (2024). Identification of Groundwater Aquifers Using Geoelectric Methods with Schlumberger Configuration in Peatland Areas, West Kalimantan, Indonesia. International Journal of Hydrological and Environmental for Sustainability, 3(1), 8-17. https://doi.org/10.58524/ijhes.v3i1.388