A Review of Insights into Algae as a Sustainable Bio-based Photocatalyst for Environmental Remediation

Ramadhani Ramadhani , Ahmad Said


Algae have recently emerged as a promising photocatalyst material due to their abundancy, low cost, and environmentally friendly nature. This review summarizes recent progress on utilizing algae as bio-based photocatalysts. Eutrophication and abundance of algae which make it an ideal candidate as a sustainable photocatalyst source, have been discussed. Recent work on synthesis methods such as hydrothermal treatment, calcination, and templating to produce photocatalytically active algae nanoparticles (NPs) has been reviewed. Photocatalytic activity of algae-based materials have been studied such as wastewater treatment, dye removal, and heavy metal remediation. Finally, strategies to further enhance algae's photocatalytic performance, including coating and doping with metals, coupling with graphene, and heterogeneous integration are highlighted here. To wrap up, this review underscores the exciting potential of algae as a sustainable and effective next-generation photocatalytic material.


Algae; Biosynthesis; Photocatalyst; Algae Nanoparticles; Phycosynthesis

Full Text:



A. Carminati, S., Rodríguez-Gutiérrez, I., Morais, A. de, Silva, B. L. da, A. Melo, M., L. Souza, F., & F. Nogueira, A. (2021). Challenges and prospects about the graphene role in the design of photoelectrodes for sunlight-driven water splitting. RSC Advances, 11(24), 14374–14398. https://doi.org/10.1039/D0RA10176A

Adenigba, V. O., Omomowo, I. O., Oloke, J. K., Fatukasi, B. A., Odeniyi, M. A., & Adedayo, A. A. (2020). Evaluation of microalgal-based nanoparticles in the adsorption of heavy metals from wastewater. IOP Conference Series: Materials Science and Engineering, 805(1), 012030. https://doi.org/10.1088/1757-899X/805/1/012030

Adeniyi, O., Azimov, U., & Burluka, A. (2018). Algae biofuel: Current status and future applications. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/J.RSER.2018.03.067

Ajarem, J. S., Maodaa, S. N., Allam, A. A., Taher, M. M., & Khalaf, M. (2022). Benign Synthesis of Cobalt Oxide Nanoparticles Containing Red Algae Extract: Antioxidant, Antimicrobial, Anticancer, and Anticoagulant Activity. Journal of Cluster Science, 33(2), 717–728. https://doi.org/10.1007/s10876-021-02004-9

Al Harby, N. F., Fetouh, H. A., & El-Batouti, M. (2024). Facile green synthesis route for new ecofriendly photo catalyst for degradation acid red 8 dye and nitrogen recovery. Scientific Reports, 14(1), Article 1. https://doi.org/10.1038/s41598-023-50930-7

Arsiya, F., Sayadi, M. H., & Sobhani, S. (2017). Green synthesis of palladium nanoparticles using Chlorella vulgaris. Materials Letters, 186, 113–115. https://doi.org/10.1016/j.matlet.2016.09.101

Aziz, N., Faraz, M., Pandey, R., Shakir, M., Fatma, T., Varma, A., Barman, I., & Prasad, R. (2015). Facile Algae-Derived Route to Biogenic Silver Nanoparticles: Synthesis, Antibacterial, and Photocatalytic Properties. Langmuir, 31(42), 11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

Balan, B., Xavier, M. M., & Mathew, S. (2023). MoS2-Based Nanocomposites for Photocatalytic Hydrogen Evolution and Carbon Dioxide Reduction. ACS Omega, 8(29), 25649–25673. https://doi.org/10.1021/acsomega.3c02084

Balaraman, P., Balasubramanian, B., Kaliannan, D., Durai, M., Kamyab, H., Park, S., Chelliapan, S., Lee, C. T., Maluventhen, V., & Maruthupandian, A. (2020). Phyco-synthesis of Silver Nanoparticles Mediated from Marine Algae Sargassum myriocystum and Its Potential Biological and Environmental Applications. Waste and Biomass Valorization, 11(10), 5255–5271. https://doi.org/10.1007/s12649-020-01083-5

Bhanderi, D., Lakhani, P., & K. Modi, C. (2024). Graphitic carbon nitride (g-C 3 N 4 ) as an emerging photocatalyst for sustainable environmental applications: A comprehensive review. RSC Sustainability. https://doi.org/10.1039/D3SU00382E

Chen, K., Xiao, J., Hisatomi, T., & Domen, K. (2023). Transition-metal (oxy)nitride photocatalysts for water splitting. Chemical Science, 14(35), 9248–9257. https://doi.org/10.1039/D3SC03198E

Chen, X., Lu, R., Liu, P., & Li, X. (2017). Effects of nano-TiO2 on Chlamydomonas reinhardtii cell surface under UV, natural light conditions. Journal of Wuhan University of Technology-Mater. Sci. Ed., 32, 217–222. https://doi.org/10.1007/s11595-017-1583-0

Cheng, J., Zhang, C., Zhang, K., Li, J., Hou, Y., Xin, J., Sun, Y., Xu, C., & Xu, W. (2023). Cyanobacteria-Mediated Light-Driven Biotransformation: The Current Status and Perspectives. ACS Omega, 8(45), 42062–42071. https://doi.org/10.1021/acsomega.3c05407

Chugh, D., Viswamalya, V. S., & Das, B. (2021). Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process. Journal of Genetic Engineering and Biotechnology, 19(1), 126. https://doi.org/10.1186/s43141-021-00228-w

D. Bristow, R. M., S. Foot, P. J., D. McGettrick, J., C. Bear, J., & S. Perera, A. (2024). Sustainable synthesis of titanium based photocatalysts via surfactant templating: From kerosene to sunflower oil. Materials Advances. https://doi.org/10.1039/D3MA00957B

Devlin, M., & Brodie, J. (2023). Nutrients and Eutrophication. In A. Reichelt-Brushett (Ed.), Marine Pollution – Monitoring, Management and Mitigation (pp. 75–100). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-10127-4_4

Dîrja, M., Criveanu, H., S?l?gean, T., & Hoble, A. (2011). Observations about the Eutrophication Process of Green Algae under the Action of Biomudalations DEA Type. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Horticulture, 67, 381–383. https://doi.org/10.15835/BUASVMCN-HORT:5649

Edison, T. N. J. I., Atchudan, R., Kamal, C., & Lee, Y. R. (2016). Caulerpa racemosa: A marine green alga for eco-friendly synthesis of silver nanoparticles and its catalytic degradation of methylene blue. Bioprocess and Biosystems Engineering, 39(9), 1401–1408. https://doi.org/10.1007/s00449-016-1616-7

Eidsvåg, H., Bentouba, S., Vajeeston, P., Yohi, S., & Velauthapillai, D. (2021). TiO2 as a Photocatalyst for Water Splitting—An Experimental and Theoretical Review. Molecules, 26(6), Article 6. https://doi.org/10.3390/molecules26061687

El Shehawy, A. S., Elsayed, A., El-Shehaby, O. A., & Ali, E. M. (2023). Potentiality of the green synthesized silver nanoparticles for heavy metal removal using Laurencia papillosa seaweed. The Egyptian Journal of Aquatic Research, 49(4), 513–519. https://doi.org/10.1016/j.ejar.2023.10.001

Eroglu, E., Chen, X., Bradshaw, M., Agarwal, V., Zou, J., Stewart, S. G., Duan, X., Lamb, R. N., Smith, S. M., Raston, C. L., & Iyer, K. S. (2012). Biogenic production of palladium nanocrystals using microalgae and their immobilization on chitosan nanofibers for catalytic applications. RSC Advances, 3(4), 1009–1012. https://doi.org/10.1039/C2RA22402J

Fatimah, I., Said, A., & Hasanah, U. A. (2015). Preparation of TiO2-SiO2 using Rice Husk Ash as Silica Source and The Kinetics Study as Photocatalyst in Methyl Violet Decolorization. Bulletin of Chemical Reaction Engineering & Catalysis, 10(1), 43–49. https://doi.org/10.9767/bcrec.10.1.7218.43-49

Figueiredo, V. M., Lourenço, J. B., Vasconcellos, N. J. S. de, & Silva, W. L. da. (2020). Preparation, characterization and photocatalytic activity of activated charcoal from microalgae for photocatalytic degradation of rhodamine B dye. Cerâmica, 66, 367–372. https://doi.org/10.1590/0366-69132020663802937

Fouda, A., Eid, A. M., Abdelkareem, A., Said, H. A., El-Belely, E. F., Alkhalifah, D. H. M., Alshallash, K. S., & Hassan, S. E.-D. (2022). Phyco-Synthesized Zinc Oxide Nanoparticles Using Marine Macroalgae, Ulva fasciata Delile, Characterization, Antibacterial Activity, Photocatalysis, and Tanning Wastewater Treatment. Catalysts, 12(7), Article 7. https://doi.org/10.3390/catal12070756

Ganapathy Selvam, G., & Sivakumar, K. (2015). Phycosynthesis of silver nanoparticles and photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Hypnea musciformis (Wulfen) J.V. Lamouroux. Applied Nanoscience, 5(5), 617–622. https://doi.org/10.1007/s13204-014-0356-8

Ganji, P., Chowdari, R. K., & Likozar, B. (2023). Photocatalytic Reduction of Carbon Dioxide to Methanol: Carbonaceous Materials, Kinetics, Industrial Feasibility, and Future Directions. Energy & Fuels, 37(11), 7577–7602. https://doi.org/10.1021/acs.energyfuels.3c00714

Gao, L., Gan, W., Qiu, Z., Zhan, X., Qiang, T., & Li, J. (2017). Preparation of heterostructured WO3/TiO2 catalysts from wood fibers and its versatile photodegradation abilities. Scientific Reports, 7(1), Article 1. https://doi.org/10.1038/s41598-017-01244-y

Guo, J., Guo, X., Yang, H., Zhang, D., & Jiang, X. (2023). Construction of Bio-TiO2/Algae Complex and Synergetic Mechanism of the Acceleration of Phenol Biodegradation. Materials, 16(10), Article 10. https://doi.org/10.3390/ma16103882

Gurusamy, S., Kulanthaisamy, M. R., Hari, D. G., Veleeswaran, A., Thulasinathan, B., Muthuramalingam, J. B., Balasubramani, R., Chang, S. W., Arasu, M. V., Al-Dhabi, N. A., Selvaraj, A., & Alagarsamy, A. (2019). Environmental friendly synthesis of TiO2-ZnO nanocomposite catalyst and silver nanomaterials for the enhanced production of biodiesel from Ulva lactuca seaweed and potential antimicrobial properties against the microbial pathogens. Journal of Photochemistry and Photobiology B: Biology, 193, 118–130. https://doi.org/10.1016/j.jphotobiol.2019.02.011

Hassaan, M. A., El-Nemr, M. A., Elkatory, M. R., Ragab, S., Niculescu, V.-C., & El Nemr, A. (2023). Principles of Photocatalysts and Their Different Applications: A Review. Topics in Current Chemistry, 381(6), 31. https://doi.org/10.1007/s41061-023-00444-7

Hernández-Zamora, M., Santiago-Martínez, E., & Martínez-Jerónimo, F. (2021). Toxigenic Microcystis aeruginosa (Cyanobacteria) affects the population growth of two common green microalgae: Evidence of other allelopathic metabolites different to cyanotoxins. Journal of Phycology, 57. https://doi.org/10.1111/jpy.13185

Karkhane, M., Lashgarian, H. E., Mirzaei, S. Z., Ghaffarizadeh, A., cherghipour, K., Sepahvand, A., & Marzban, A. (2020). Antifungal, antioxidant and photocatalytic activities of zinc nanoparticles synthesized by Sargassum vulgare extract. Biocatalysis and Agricultural Biotechnology, 29, 101791. https://doi.org/10.1016/j.bcab.2020.101791

Kato, S., & Shinomura, T. (2020). Carotenoid Synthesis and Accumulation in Microalgae Under Environmental Stress. 69–80. https://doi.org/10.1007/978-3-030-50971-2_4

Khalafi, T., Buazar, F., & Ghanemi, K. (2019). Phycosynthesis and Enhanced Photocatalytic Activity of Zinc Oxide Nanoparticles Toward Organosulfur Pollutants. Scientific Reports, 9(1), Article 1. https://doi.org/10.1038/s41598-019-43368-3

Khandelwal, M., Choudhary, S., Harish, Kumawat, A., Misra, K. P., Rathore, D. S., & Khangarot, R. K. (2023). Asterarcys quadricellulare algae-mediated copper oxide nanoparticles as a robust and recyclable catalyst for the degradation of noxious dyes from wastewater. RSC Advances, 13(40), 28179–28196. https://doi.org/10.1039/D3RA05254K

Kibsgaard, J., Chen, Z., Reinecke, B. N., & Jaramillo, T. (2012). Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nature Materials, 11 11, 963–969. https://doi.org/10.1038/nmat3439

Kim, B., Song, W. C., Park, S. Y., & Park, G. (2021). Green Synthesis of Silver and Gold Nanoparticles via Sargassum serratifolium Extract for Catalytic Reduction of Organic Dyes. Catalysts, 11(3), Article 3. https://doi.org/10.3390/catal11030347

Kova?i?, Ž., Likozar, B., & Huš, M. (2020). Photocatalytic CO2 Reduction: A Review of Ab Initio Mechanism, Kinetics, and Multiscale Modeling Simulations. ACS Catalysis, 10(24), 14984–15007. https://doi.org/10.1021/acscatal.0c02557

Kudo, A., & Miseki, Y. (2008). Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 38(1), 253–278. https://doi.org/10.1039/B800489G

Kumar, P., Govindaraju, M., Senthamilselvi, S., & Premkumar, K. (2013). Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca. Colloids and Surfaces B: Biointerfaces, 103, 658–661. https://doi.org/10.1016/j.colsurfb.2012.11.022

Larkum, A., & Weyrauch, S. K. (1977). Photosynthetic Action Spectra And Light?Harvesting In Griffithsia Monilis (Rhodophyta). Photochemistry and Photobiology, 25. https://doi.org/10.1111/j.1751-1097.1977.tb07425.x

Li, S., Wen, H., Zhang, H., Qin, W., & Yin, H. (2022). Analysis of algal bloom species in eastern China and buoy-bead flotation used for treating microalgae. Desalination and Water Treatment. https://doi.org/10.5004/dwt.2022.28685

Lin, L., Ma, Y., Vequizo, J. J. M., Nakabayashi, M., Gu, C., Tao, X., Yoshida, H., Pihosh, Y., Nishina, Y., Yamakata, A., Shibata, N., Hisatomi, T., Takata, T., & Domen, K. (2024). Efficient and stable visible-light-driven Z-scheme overall water splitting using an oxysulfide H2 evolution photocatalyst. Nature Communications, 15(1), Article 1. https://doi.org/10.1038/s41467-024-44706-4

Liu, W., Chen, S., Zhou, H., Wang, X., Xu, H., Wang, L., Zhang, W., & Chen, L. (2022). Application of BiVO4–Microalgae Combined Treatment to Remove High Concentration Mixture of Sulfamethazine and Sulfadiazine. Water, 14(5), Article 5. https://doi.org/10.3390/w14050718

Lizundia, E., Nguyen, T.-D., Winnick, R. J., & MacLachlan, M. J. (2021). Biomimetic photonic materials derived from chitin and chitosan. Journal of Materials Chemistry C, 9(3), 796–817. https://doi.org/10.1039/D0TC05381C

Lubitz, W., Chrysina, M., & Cox, N. (2019). Water oxidation in photosystem II. Photosynthesis Research, 142(1), 105–125. https://doi.org/10.1007/s11120-019-00648-3

Ma, L., Wang, L., Guo, Y., Wang, Z., Yin, H., & Jiang, R. (2021). Enhancing the photocatalytic water splitting of graphitic carbon nitride by hollow anatase titania dielectric resonators. Journal of Colloid and Interface Science, 598, 14–23. https://doi.org/10.1016/j.jcis.2021.04.026

Machín, A., Cotto, M., Ducongé, J., & Márquez, F. (2023). Artificial Photosynthesis: Current Advancements and Future Prospects. Biomimetics, 8(3), Article 3. https://doi.org/10.3390/biomimetics8030298

Moavi, J., Buazar, F., & Sayahi, M. H. (2021). Algal magnetic nickel oxide nanocatalyst in accelerated synthesis of pyridopyrimidine derivatives. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-85832-z

Mohan, S., Govindankutty, G., Sathish, A., & Kamaraj, N. (2021). Spirulina platensis-capped mesoporous magnetic nanoparticles for the adsorptive removal of chromium. The Canadian Journal of Chemical Engineering, 99(1), 294–305. https://doi.org/10.1002/cjce.23854

Mourdikoudis, S., M. Pallares, R., & K. Thanh, N. T. (2018). Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10(27), 12871–12934. https://doi.org/10.1039/C8NR02278J

Mu, Q., Sun, Y., Guo, A., Yu, X., Xu, X., Cai, A., & Wang, X. (2019). Bio-templated synthesis of Fe3O4–TiO2 composites derived from Chlorella pyrenoidosa with enhanced visible-light photocatalytic performance. Materials Research Express, 6(9), 0950c3. https://doi.org/10.1088/2053-1591/ab353e

Osman, A. I., Zhang, Y., Farghali, M., Rashwan, A. K., Eltaweil, A. S., Abd El-Monaem, E. M., Mohamed, I. M. A., Badr, M. M., Ihara, I., Rooney, D. W., & Yap, P.-S. (2024). Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review. Environmental Chemistry Letters. https://doi.org/10.1007/s10311-023-01682-3

Patricia M. Glibert, Michele A. Burford, Glibert, P., & Burford, M. (2017). Globally Changing Nutrient Loads and Harmful Algal Blooms: Recent Advances, New Paradigms, and Continuing Challenges. Oceanography, 30(1), 58–69. https://doi.org/10.5670/oceanog.2017.110

Petersen, J., Rredhi, A., Szyttenholm, J., Oldemeyer, S., Kottke, T., & Mittag, M. (2021). The World of Algae Reveals a Broad Variety of Cryptochrome Properties and Functions. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.766509

Rajaboopathi, S., & Thambidurai, S. (2017). Green synthesis of seaweed surfactant based CdO-ZnO nanoparticles for better thermal and photocatalytic activity. Current Applied Physics, 17(12), 1622–1638. https://doi.org/10.1016/j.cap.2017.09.006

Ramadhani, R., & Said, A. (2023). Assessment of Chemical Oxygen Demand Removal Efficiency and Microbial Dynamics during Aerobically Degradation of Wastewater in Activated Sludge. Journal Of Biology Education, 6(2), Article 2. https://doi.org/10.21043/jobe.v6i2.22833

Ramakrishna, M., Rajesh Babu, D., Gengan, R. M., Chandra, S., & Nageswara Rao, G. (2016). Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. Journal of Nanostructure in Chemistry, 6(1), 1–13. https://doi.org/10.1007/s40097-015-0173-y

Ranjan Mishra, S., Gadore, V., & Ahmaruzzaman, M. (2024). Sustainability-driven photocatalysis: Oxygen-doped g-C 3 N 4 for organic contaminant degradation. RSC Sustainability, 2(1), 91–100. https://doi.org/10.1039/D3SU00384A

Rao, M. D., & Gautam, P. (2016). Synthesis and characterization of ZnO nanoflowers using Chlamydomonas reinhardtii: A green approach. Environmental Progress & Sustainable Energy, 35(4), 1020–1026. https://doi.org/10.1002/ep.12315

Rao, M. D., & Pennathur, G. (2017). Green synthesis and characterization of cadmium sulphide nanoparticles from Chlamydomonas reinhardtii and their application as photocatalysts. Materials Research Bulletin, 85, 64–73. https://doi.org/10.1016/j.materresbull.2016.08.049

Salehi, M., Biria, D., Shariati, M., & Farhadian, M. (2019). Treatment of normal hydrocarbons contaminated water by combined microalgae – Photocatalytic nanoparticles system. Journal of Environmental Management, 243, 116–126. https://doi.org/10.1016/j.jenvman.2019.04.131

Samia, saeed, F., Jia, L., Arain, M., Ahmed, A., Yikai, F., Zhenda, C., Hussain, I., Abbas Ashraf, G., Ben Ahmed, S., & Dai, H. (2024). Emerging trends in metal-organic framework (MOFs) photocatalysts for hydrogen energy using water splitting: A state-of-the-art review. Journal of Industrial and Engineering Chemistry, 131, 54–135. https://doi.org/10.1016/j.jiec.2023.10.055

Schneider, J., & Bahnemann, D. W. (2013). Undesired Role of Sacrificial Reagents in Photocatalysis. The Journal of Physical Chemistry Letters, 4(20), 3479–3483. https://doi.org/10.1021/jz4018199

Serrà, A., Artal, R., García-Amorós, J., Sepúlveda, B., Gómez, E., Nogués, J., & Philippe, L. (2020). Hybrid Ni@ZnO@ZnS-Microalgae for Circular Economy: A Smart Route to the Efficient Integration of Solar Photocatalytic Water Decontamination and Bioethanol Production. Advanced Science, 7(3), 1902447. https://doi.org/10.1002/advs.201902447

Serrà, A., Pip, P., Gómez, E., & Philippe, L. (2020). Efficient magnetic hybrid ZnO-based photocatalysts for visible-light-driven removal of toxic cyanobacteria blooms and cyanotoxins. Applied Catalysis B: Environmental. https://doi.org/10.1016/j.apcatb.2020.118745

Sherwood, A. (2016). Green Algae (Chlorophyta and Streptophyta) in Rivers. 35–63. https://doi.org/10.1007/978-3-319-31984-1_3

Shevela, D., Björn, L., & Govindjee, G. (2019). Photosynthesis: Solar Energy for Life. In Photosynthesis: Solar Energy For Life. https://doi.org/10.1142/10522

Singla, S., Sharma, S., Basu, S., Shetti, N. P., & Aminabhavi, T. M. (2021). Photocatalytic water splitting hydrogen production via environmental benign carbon based nanomaterials. International Journal of Hydrogen Energy, 46(68), 33696–33717. https://doi.org/10.1016/j.ijhydene.2021.07.187

Somasundaram, C. K., Atchudan, R., Edison, T. N. J. I., Perumal, S., Vinodh, R., Sundramoorthy, A. K., Babu, R. S., Alagan, M., & Lee, Y. R. (2021). Sustainable Synthesis of Silver Nanoparticles Using Marine Algae for Catalytic Degradation of Methylene Blue. Catalysts, 11(11), Article 11. https://doi.org/10.3390/catal11111377

Song, W. C., Kim, B., Park, S. Y., Park, G., & Oh, J.-W. (2022). Biosynthesis of silver and gold nanoparticles using Sargassum horneri extract as catalyst for industrial dye degradation. Arabian Journal of Chemistry, 15(9), 104056. https://doi.org/10.1016/j.arabjc.2022.104056

Sundar, V., Balasubramanian, B., Sivakumar, M., Chinnaraj, S., Palani, V., Maluventhen, V., Kamyab, H., Chelliapan, S., Arumugam, M., & Patricia Zuleta Mediavilla, D. (2024). An eco-friendly synthesis of titanium oxide nanoparticles mediated from Syringodium isoetifolium and evaluate its biological activity and photocatalytic dye degradation. Inorganic Chemistry Communications, 112125. https://doi.org/10.1016/j.inoche.2024.112125

Sundaram, T., Rajendran, S., Gnanasekaran, L., Rachmadona, N., Jiang, J.-J., Khoo, K. S., & Show, P. L. (2023). Bioengineering strategies of microalgae biomass for biofuel production: Recent advancement and insight. Bioengineered, 14(1), 2252228. https://doi.org/10.1080/21655979.2023.2252228

Toerien, D., Gerber, A., Lötter, L., & Cloete, T. E. (1990). Enhanced Biological Phosphorus Removal in Activated Sludge Systems. Advances in Microbial Ecology, 11, 173–230. https://doi.org/10.1007/978-1-4684-7612-5_5

Tu, X., Ke, S., Luo, S., Rentao, Z., Zeng, Z., & Luo, S. (2021). Self-supporting rGO/BiOBr composite on loofah-sponge as a floating monolithic photocatalyst for efficient microcystis aeruginosa inactivation. Separation and Purification Technology, 275. https://doi.org/10.1016/J.SEPPUR.2021.119226

Vinayak, V., Khan, M. J., Varjani, S., Saratale, G., Saratale, R., & Bhatia, S. (2021). Microbial fuel cells for remediation of environmental pollutants and value addition: Special focus on coupling diatom microbial fuel cells with photocatalytic and photoelectric fuel cells. Journal of Biotechnology. https://doi.org/10.1016/j.jbiotec.2021.07.003

Wang, L., Zhang, C., Gao, F., Mailhot, G., & Pan, G. (2017). Algae decorated TiO2/Ag hybrid nanofiber membrane with enhanced photocatalytic activity for Cr(VI) removal under visible light. Chemical Engineering Journal, 314, 622–630. https://doi.org/10.1016/J.CEJ.2016.12.020

Wang, X., Wang, X., Zhao, J., Song, J., Su, C., & Wang, Z. (2018). Surface modified TiO2 floating photocatalyst with PDDA for efficient adsorption and photocatalytic inactivation of Microcystis aeruginosa. Water Research, 131, 320–333. https://doi.org/10.1016/j.watres.2017.12.062

Wu, H., Li, L., Wang, S., Zhu, N., Li, Z., Zhao, L., & Wang, Y. (2023). Recent advances of semiconductor photocatalysis for water pollutant treatment: Mechanisms, materials and applications. Physical Chemistry Chemical Physics, 25(38), 25899–25924. https://doi.org/10.1039/D3CP03391K

Wurtsbaugh, W. A., Paerl, H. W., & Dodds, W. K. (2019). Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIREs Water, 6(5), e1373. https://doi.org/10.1002/wat2.1373

Xia, M., Zhao, X., Zhang, Y., Pan, W., & Leung, D. Y. C. (2022). Rational catalyst design for spatial separation of charge carriers in a multi-component photocatalyst for effective hydrogen evolution. Journal of Materials Chemistry A, 10(48), 25380–25405. https://doi.org/10.1039/D2TA06609B

Yang, H., Yang, B., Chen, W., & Yang, J. (2022). Preparation and Photocatalytic Activities of TiO2-Based Composite Catalysts. Catalysts, 12(10), Article 10. https://doi.org/10.3390/catal12101263

Zamani, W., Rastgar, S., & Hedayati, A. (2023). Capability of TiO2 and Fe3O4 nanoparticles loaded onto Algae (Scendesmus sp.) as a novel bio-magnetic photocatalyst to degration of Red195 dye in the sonophotocatalytic treatment process under ultrasonic/UVA irradiation. Scientific Reports, 13(1), Article 1. https://doi.org/10.1038/s41598-023-45274-1

Zhang, P., Peng, C., Zhang, J., Zhang, J., Chen, J., & Zhao, H. (2022). Long-Term Harmful Algal Blooms and Nutrients Patterns Affected by Climate Change and Anthropogenic Pressures in the Zhanjiang Bay, China. Frontiers in Marine Science, 9. https://www.frontiersin.org/articles/10.3389/fmars.2022.849819

Zhu, S., & Wang, D. (2017). Photocatalysis: Basic Principles, Diverse Forms of Implementations and Emerging Scientific Opportunities. Advanced Energy Materials, 7. https://doi.org/10.1002/aenm.201700841

DOI: https://doi.org/10.58524/ijhes.v3i1.387


  • There are currently no refbacks.


Creative Commons License

International Journal of Hydrological and Environmental for Sustainability is licensed under a Creative Commons Attribution-ShareAlike 4.0 International LicensePublished by Foundation of Advanced Education (FoundAE). ISSN Numbers : p-ISSN 2828-6405 | e-ISSN 2828-5050