X-Ray Fluorescence Monitoring Metal Content and Nutrient Elements for Predicting Soil Fertility Parameters Based on pH in Ultisol Soil

Samsidar Samsidar , Maison Maison , Ermadani Ermadani , Madyawati Latief , Jesi Pebralia , Hesti Riany , Dwi Rahma Amanda , Lucky Zaehir Maulana

Abstract


Soil fertility parameters, including macronutrients, micronutrients, and metal content, are very important for optimizing agricultural and plantation land management. Ultisol is a type of soil that is commonly used as a planting medium for oil palm plantations, rubber, and various types of vegetables. Continuous land use causes variations in nutrient and metal content. This change is also caused by the fertilization process and the characteristics of the plants grown in the area. In this study, an analysis of soil fertility parameters (macronutrients, micronutrients, and metal content) was analyzed using X-Ray Fluorescence (XRF) on Ultisol soil taken from Muara Jambi Regency, Indonesia. This analysis was conducted across land-use areas (Palm, Rubber, Vegetables, and Forest). Subsequently, the obtained measurements were used to model correlations with soil pH values to predict soil fertility parameters. The quantitative results showed that the metal content values were reasonably consistent across all locations regarding metal types and their percentage concentrations. However, locations 1 (T1) and 2 (T2) have higher aluminum (Al) content than locations 3 and 4 and lower magnesium (Mg) content. The modeling, when correlated with pH values, indicated that metal elements correlated 0.938, macronutrients 0.934, and micronutrients 0.767. From these correlations, it can be qualitatively inferred that there is a strong relationship between pH and the presence of metal content, macronutrients, and micronutrients. In the future, this can serve as a model for estimating the presence of soil fertility parameters.

Keywords


macronutrients; micronutrients; metal content; pH; ultisol; x-ray fluorescence

Full Text:

PDF

References


Andrade, R., Faria, W. M.,Silva, S.H.G., Chakraborty, S., Weindorf, D.C., Mesquite, L.F, Guilherme, L. R. G, Curi, N. (2020). Prediction of soil fertility via portable X-ray fluorescence (pXRF) spectrometry and soil texture in the Brazilian Coastal Plains. Journal Geoderma. 257; 1-10. doi: 10.1016/j.geoderma.2019.113960

Bahera, S. K and Shukla, A. K. (2014). Total and Extractable Manganese and Iron in Some Cultivated Acid Soils of India: Status, Distribution and Relationship with Some Soil Properties. Pedosphere. 24 (2); 196-208. doi: 10.1016/S1002-0160(14)60006-0

Barrow, N.J. (2016). The effects of pH on phosphate uptake from the soil. Plant Soil. 401–410. doi: 10.1007/s11104-016-3008-9

Benedet, L., Guzman, S. F.A., Faria, W.A., Silva, S. H. G., Macini, M., Teixeira, A. F. D. S., Pierangali, L. M. P., Junior. F. W. A., Junior, A.l.P., Sauza, I.A. D. S., Marques, M. D. J.J., Guilherme, L. R. G., Curi, N. (2021). Rapid soil fertility prediction using x-ray fluorescence data and machine learning algorithms. Journal Catena. 197; 1-15. doi: 10.1016/j.catena.2020.105003

Curtin, D., Campbell, C.A., Jalil, A. (1998). Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biology and Biochemistry. 30(1); 57-64. doi: 10.1016/S0038-0717(97)00094-1

Deina, D. (2019). Review Article. The Role of Soil pH in Plant Nutrition and Soil Remediation. Applied and Environmental Soil Science. Doi: 10.1155/2019/5794869

Ge, J., Wang, K., Fan, J., Gongadze, K., Wu, L. (2020). Soil nutrients of different land-use types and topographic positions in the water-wind erosion crisscross region of China's Loess Plateau. Catena. 184; 104243. doi: 10.1016/j.catena.2019.104243

Grybos, M., Davranche, M., Gruau, G., Petitjean, P., Pedrot, M. (2009). Increasing pH drives organic Matter Solubilization from Wetland Soils Under Reducting Conditions. Gederma 154(1-2); 13-19. doi: 10.1016/j.geoderma.2009.09.001

Helfer, G. A., Barbosa, J, L, V., Santos, R, D., Costa, B, D, C. (2020). A computational model for soil fertility prediction in ubiquitous agriculture. Journal Computers and Electronics in Agriculture. 175; 105602. doi: 10.1016/j.compag.2020.105602

Hejman, M., Berkova. M., Kunzova, E. (2013). Effect of long-term fertilizer application on yield and concentrations of elements (N, P, K, Ca, Mg, As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, Zn) in grain of spring barley. Plant Soil Environ. 59 (7); 329-334. Doi: 10.17221/159/2013-PS

Ivezic, V., Almas, A. R., Singh, B. R., Lonevaric, Z. (2015). Prediction of trace metal concentrations (Cd, Cu, Fe, Mn, and Zn) in wheat grain from unpolluted agricultural soil. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science. 63(4); 360-369. doi: 10.1080/09064710.2013.785586.

Janovsky, M. P., Karlik, P., Horak, J., Smedja, L., Opare, M. A., Benes, J., Hejcmen, M. (2020). Historical land-use in an abandoned mountain village in the Czech Republic is reflected by the Mg, P, K, Ca, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Zr, and Sr content in contemporary soils. Catena. 187; 104347. doi: 10.1016/j.catena.2019.104347

Kemmit, S.J., Wring, D., Goulding., K. W.T, Jones, D.L. (2006). pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology and Biochemistry. 38(5); 898-919. doi: 10.1016/j.soilbio.2005.08.006

Lima,T.M.D., Weindorf, D.C., Curi, N., Guilherme, L.R.G, Lana, R.M. Q, Ribeiro, B. T. (2019). Elemental analysis of cerrado agricultural soil via portable X-ray fluorescence spectrometry: Inferences for soil fertility assessment. Jornal Geoderma. 353; 264-272. doi: 10.1016/j.geoderma.2019.06.045

Meille, L. J., Holland, J.E., McGrath, S.P., Glendining, M.J., Thomas, C.L., Haefele, S.M. (2021). The grain mineral composition of barley, oat, and wheat on soils with pH and soil phosphorus gradients. European Journal of Agronomy. 126;126281. doi: 10.1016/j.eja.2021.126281

Minasny, B., Hong, S. Y., Hartemink, A. E., Kim, Y. H., Kang, S.S. (2016). Soil pH increased under paddy in South Korea Between 2000 and 2012. Journal Agriculture, Ecosystems and Environment. 221; 205-213. doi: 10.1016/j.agee.2016.01.042

Sintorini, M. M., Widyatmoko, H., Sinaga, E., Aliyah, N. (2021). Effect of pH on metal mobility in the soil. The 5th International Seminar on Sustainable Urban Development. IOP Publishing. 737; 012071. doi: 10.1088/1755-1315/737/1/012071.

Pansu, M. (2003). Handbook of Soil Analysis. Springer. ISBN-13. 978-3-540-31210-9.

Walworth, J.L, (2006). Soil Sampling and Analysis. College of Agriculture and Life Sciences. The University Of Arizona Cooperative Extensions. Ref 10/11; 1-5.

Xu, D., Chen, S., Rossel, R.A.V., Biwas, A, Li, S., Zhou, Y., Shi, Z. (2019). Xray fluorescence and visible near infrared sensor fusion for predicting soil chromium content. Journal Geoderma. 352; 61-69. doi: 10.1016/j.geoderma.2019.05.036




DOI: https://doi.org/10.58524/ijhes.v2i3.290

Refbacks

  • There are currently no refbacks.


 

Creative Commons License

International Journal of Hydrological and Environmental for Sustainability is licensed under a Creative Commons Attribution-ShareAlike 4.0 International LicenseCopyright © Foundae (Foundation of Advanced Education). ISSN Numbers : p-ISSN 2828-6405 | e-ISSN 2828-5050