X-Ray Fluorescence Monitoring Metal Content and Nutrient Elements for Predicting Soil Fertility Parameters Based on pH in Ultisol Soil
Abstract
Keywords
Full Text:
PDFReferences
Andrade, R., Faria, W. M.,Silva, S.H.G., Chakraborty, S., Weindorf, D.C., Mesquite, L.F, Guilherme, L. R. G, Curi, N. (2020). Prediction of soil fertility via portable X-ray fluorescence (pXRF) spectrometry and soil texture in the Brazilian Coastal Plains. Journal Geoderma. 257; 1-10. doi: 10.1016/j.geoderma.2019.113960
Bahera, S. K and Shukla, A. K. (2014). Total and Extractable Manganese and Iron in Some Cultivated Acid Soils of India: Status, Distribution and Relationship with Some Soil Properties. Pedosphere. 24 (2); 196-208. doi: 10.1016/S1002-0160(14)60006-0
Barrow, N.J. (2016). The effects of pH on phosphate uptake from the soil. Plant Soil. 401–410. doi: 10.1007/s11104-016-3008-9
Benedet, L., Guzman, S. F.A., Faria, W.A., Silva, S. H. G., Macini, M., Teixeira, A. F. D. S., Pierangali, L. M. P., Junior. F. W. A., Junior, A.l.P., Sauza, I.A. D. S., Marques, M. D. J.J., Guilherme, L. R. G., Curi, N. (2021). Rapid soil fertility prediction using x-ray fluorescence data and machine learning algorithms. Journal Catena. 197; 1-15. doi: 10.1016/j.catena.2020.105003
Curtin, D., Campbell, C.A., Jalil, A. (1998). Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biology and Biochemistry. 30(1); 57-64. doi: 10.1016/S0038-0717(97)00094-1
Deina, D. (2019). Review Article. The Role of Soil pH in Plant Nutrition and Soil Remediation. Applied and Environmental Soil Science. Doi: 10.1155/2019/5794869
Ge, J., Wang, K., Fan, J., Gongadze, K., Wu, L. (2020). Soil nutrients of different land-use types and topographic positions in the water-wind erosion crisscross region of China's Loess Plateau. Catena. 184; 104243. doi: 10.1016/j.catena.2019.104243
Grybos, M., Davranche, M., Gruau, G., Petitjean, P., Pedrot, M. (2009). Increasing pH drives organic Matter Solubilization from Wetland Soils Under Reducting Conditions. Gederma 154(1-2); 13-19. doi: 10.1016/j.geoderma.2009.09.001
Helfer, G. A., Barbosa, J, L, V., Santos, R, D., Costa, B, D, C. (2020). A computational model for soil fertility prediction in ubiquitous agriculture. Journal Computers and Electronics in Agriculture. 175; 105602. doi: 10.1016/j.compag.2020.105602
Hejman, M., Berkova. M., Kunzova, E. (2013). Effect of long-term fertilizer application on yield and concentrations of elements (N, P, K, Ca, Mg, As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, Zn) in grain of spring barley. Plant Soil Environ. 59 (7); 329-334. Doi: 10.17221/159/2013-PS
Ivezic, V., Almas, A. R., Singh, B. R., Lonevaric, Z. (2015). Prediction of trace metal concentrations (Cd, Cu, Fe, Mn, and Zn) in wheat grain from unpolluted agricultural soil. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science. 63(4); 360-369. doi: 10.1080/09064710.2013.785586.
Janovsky, M. P., Karlik, P., Horak, J., Smedja, L., Opare, M. A., Benes, J., Hejcmen, M. (2020). Historical land-use in an abandoned mountain village in the Czech Republic is reflected by the Mg, P, K, Ca, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Zr, and Sr content in contemporary soils. Catena. 187; 104347. doi: 10.1016/j.catena.2019.104347
Kemmit, S.J., Wring, D., Goulding., K. W.T, Jones, D.L. (2006). pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology and Biochemistry. 38(5); 898-919. doi: 10.1016/j.soilbio.2005.08.006
Lima,T.M.D., Weindorf, D.C., Curi, N., Guilherme, L.R.G, Lana, R.M. Q, Ribeiro, B. T. (2019). Elemental analysis of cerrado agricultural soil via portable X-ray fluorescence spectrometry: Inferences for soil fertility assessment. Jornal Geoderma. 353; 264-272. doi: 10.1016/j.geoderma.2019.06.045
Meille, L. J., Holland, J.E., McGrath, S.P., Glendining, M.J., Thomas, C.L., Haefele, S.M. (2021). The grain mineral composition of barley, oat, and wheat on soils with pH and soil phosphorus gradients. European Journal of Agronomy. 126;126281. doi: 10.1016/j.eja.2021.126281
Minasny, B., Hong, S. Y., Hartemink, A. E., Kim, Y. H., Kang, S.S. (2016). Soil pH increased under paddy in South Korea Between 2000 and 2012. Journal Agriculture, Ecosystems and Environment. 221; 205-213. doi: 10.1016/j.agee.2016.01.042
Sintorini, M. M., Widyatmoko, H., Sinaga, E., Aliyah, N. (2021). Effect of pH on metal mobility in the soil. The 5th International Seminar on Sustainable Urban Development. IOP Publishing. 737; 012071. doi: 10.1088/1755-1315/737/1/012071.
Pansu, M. (2003). Handbook of Soil Analysis. Springer. ISBN-13. 978-3-540-31210-9.
Walworth, J.L, (2006). Soil Sampling and Analysis. College of Agriculture and Life Sciences. The University Of Arizona Cooperative Extensions. Ref 10/11; 1-5.
Xu, D., Chen, S., Rossel, R.A.V., Biwas, A, Li, S., Zhou, Y., Shi, Z. (2019). Xray fluorescence and visible near infrared sensor fusion for predicting soil chromium content. Journal Geoderma. 352; 61-69. doi: 10.1016/j.geoderma.2019.05.036
DOI: https://doi.org/10.58524/ijhes.v2i3.290
Refbacks
- There are currently no refbacks.
International Journal of Hydrological and Environmental for Sustainability is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Copyright © Foundae (Foundation of Advanced Education). ISSN Numbers : p-ISSN 2828-6405 | e-ISSN 2828-5050