Identification of Subsurface Structures Using Topex Altimetry Satellite Gravity Data: Implications for Preliminary Surveys of Geothermal Existence

Dwi Anggraeni , Rahmat Nawi Siregar , Sismanto Sismanto

Abstract


Bangka Island is on the Sunda Shelf (Eurasian tectonic plate) and the outer part of the Sumatra basin. Plate tectonic activity results in fault structures and forms the statigraphy of rock formations such as Alluvium, Ranggam, Klabat Granite, Tanjung Genting, and the Pemali Complex. The fault structure was identified as a control structure for the radiogenic geothermal system. Radiogenic geothermal heat originates from the decay of radioactive elements in granite rocks (Klabat Granite formation) on Bangka Island. The purpose of this research is as a preliminary survey of the presence of Slag and Cracker geothermal energy on Bangka Island using the gravity method. The research data used is secondary data obtained from the Topex satellite (Topography Experiment). The results of the modeling show that many fault structures in the study area are found around the Slag and Cracking geothermal manifestations. The fault structure is also accompanied by a breakthrough by the lower layer of rock into the rock above it. So that the fault structure can control the Slag and Crack radiogenic geothermal system.

Keywords


density; gravity; fault; topex; geothermal existence

Full Text:

PDF

References


ADB, & Bank, W. (2015). Unlocking Indonesia’s Geothermal Potential. https://creativecommons.org/licenses/by/3.0/igo/.

By Darma, S., Harsoprayitno, S., Setiawan, B., Hadyanto, Sukhyar, R., Soedibjo, A. W., Ganefianto, N., & Stimac, J. (2010). Geothermal Energy Update: Geothermal Energy Development and Utilization in Indonesia. Proceedings of World Geothermal Congress 2010, April, 1–13.

Darmawan, I. G. B., Setijadji, L. D., & Wintolo, D. (2015). Geology and Geothermal System in Rajabasa Volcano South Lampung Regenc , Indonesia (Approach to Field Observations , Water Geochemistry and Magnetic Method ). Proceedings World Geothermal Congress 2015, April, 12.

Deon, F., Förster, H. J., Brehme, M., Wiegand, B., Scheytt, T., Moeck, I., Jaya, M. S., & Putriatni, D. J. (2015). Geochemical/hydrochemical evaluation of the geothermal potential of the Lamongan volcanic field (Eastern Java, Indonesia). Geothermal Energy, 3(1), 1–21. https://doi.org/10.1186/s40517-015-0040-6

Giggenbach, W. F. (1991). Chemica Techniques in Geothermal Exploration. In Chemistry Devision (pp. 119–144).

HanuÅ¡, V., Å piÄák, A., & VanÄ›k, J. (1996). Sumatran segment of the Indonesian subduction zone: Morphology of the Wadati-Benioff zone and seismotectonic pattern of the continental wedge. Journal of Southeast Asian Earth Sciences, 13(1), 39–60. https://doi.org/10.1016/0743-9547(96)00004-9

Hochstein, M. P., & Sudarman, S. (1993). Geothermal resources of Sumatra. Geothermics, 22(3), 181–200. https://doi.org/10.1016/0375-6505(93)90042-L

Kruger, P., Stoker, A., & Umaña, A. (1977). Radon in geothermal reservoir engineering. Geothermics, 5(1–4), 13–19. https://doi.org/10.1016/0375-6505(77)90004-9

Lange, D., Tilmann, F., Henstock, T., Rietbrock, A., Natawidjaja, D., & Kopp, H. (2018). Structure of the central Sumatran subduction zone revealed by local earthquake travel-time tomography using an amphibious network. Solid Earth, 9(4), 1035–1049. https://doi.org/10.5194/se-9-1035-2018

Li, Y., Qiu, W., Qin, F., Fang, H., Hadjiev, V. G., Litvinov, D., & Bao, J. (2016). Identification of cobalt oxides with Raman scattering and Fourier transform infrared spectroscopy. The Journal of Physical Chemistry C, 120(8), 4511–4516. https://doi.org/https://doi.org/10.1021/acs.jpcc.5b11185

Liu, S., Suardi, I., Xu, X., Yang, S., & Tong, P. (2021). The Geometry of the Subducted Slab Beneath Sumatra Revealed by Regional and Teleseismic Traveltime Tomography. Journal of Geophysical Research: Solid Earth, 126(1), 1–29. https://doi.org/10.1029/2020JB020169

Malod, J. A., Karta, K., Beslier, M. O., & Zen, M. T. (1995). From normal to oblique subduction: Tectonic relationships between Java and Sumatra. Journal of Southeast Asian Earth Sciences, 12(1–2), 85–93. https://doi.org/10.1016/0743-9547(95)00023-2

Matsubaya, O., Sakai, H., Kusachi, I., & Satake, H. (1973). Hydrogen and oxygen isotopic ratios and major element chemistry of Japanese thermal water systems. Geochemical Journal, 7(3), 123–151. https://doi.org/10.2343/geochemj.7.123

McCaffrey, R. (2009). The tectonic framework of the sumatran subduction zone. Annual Review of Earth and Planetary Sciences, 37, 345–366. https://doi.org/10.1146/annurev.earth.031208.100212

Meijaard, E., Dennis, R. A., Saputra, B. K., Draugelis, G. J., Qadir, M. C. A., & Garnier, S. (2019). Rapid Environmental and Social Assessment of Geothermal Power Development in Conservation Forest of Indonesia. Proceedings World Geothermal Congress 2020 Reykjavik, Iceland, April 26 – May 2, 2020, August, 1–12.

Millot, R., Hegan, A., & Negrel, P. (2012). Geothermal waters from the Taupo Volcanic Zone, New Zealand: Li, B, and Sr isotopes characterization. Applied Geochemistry, 27, 677–688. https://doi.org/doi:10.1016/j.apgeochem.2011.12.015

Millot, R., Negrel, P., & E Petelet, giraud. (2007). Multi-isotopic (Li, B, Sr, Nd) approach for geothermal reservoir characterization in the Limagne Basin (Massif Central, France). Applied Geochemistry, 22(11), 2307–2325. https://doi.org/https://doi.org/10.1016/j.apgeochem.2007.04.022

Nafian, M., Gunawan, B., Permana, N. R., & Umam, R. (2022). Identification of the Subsurface Structure of Geothermal Working Area of the Hamiding Mountain , North Maluku through Land Surface Temperature ( LST ) Data and Forward Modeling with the Gravity Method. J. Nat. Scien. & Math. Res, 8(1), 10–19.

Siregar, R. N., & Kurniawan, W. B. (2018). 2D Interpretation of Subsurface Hot Spring Geothermal Structure in Nyelanding Village Through Schlumberger Geoelectricity Configuration Method. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 7(1), 81. https://doi.org/10.24042/jipfalbiruni.v7i1.2324

Takahashi, M., Urai, M., Yasukawa, K., Muraoka, H., Matsuda, K., & Akasako, H. (2000). Geochemistry of Hot Spring Waters At Bajawa Area , Central Flores , Nusa Tenggara Timur , Indonesia. Western Pacific Earth Sciences, 1807–1812.

Timperley, M. H., & Vigor-Brown, R. J. (2010). Water chemistry of lakes in the taupo volcanic zone, new zealand. New Zealand Journal of Marine and Freshwater Research, 20(2), 173–183. https://doi.org/10.1080/00288330.1986.9516141

Utama, H. W., Mulyasari, R., & Said, Y. M. (2021). Geothermal Potential on Sumatra Fault System To Sustainable Geotourism in West Sumatra. Jurnal Geofisika Eksplorasi, 7(2), 126–137. https://doi.org/10.23960/jge.v7i2.128

W.F. Giggenbach. (1992). Isotopic shifts in waters from geothermal and volcanicsystems along convergent plate boundaries and their origin. Earth and Planetary Science Letters, 113(4), 495–510.

Winters, M. S., & Cawvey, M. (2015). Governance obstacles to geothermal energy development in Indonesia. Journal of Current Southeast Asian Affairs, 34(1), 27–56. https://doi.org/10.1177/186810341503400102




DOI: https://doi.org/10.58524/ijhes.v2i2.261

Refbacks

  • There are currently no refbacks.


 

Creative Commons License

International Journal of Hydrological and Environmental for Sustainability is licensed under a Creative Commons Attribution-ShareAlike 4.0 International LicensePublished by Foundation of Advanced Education (FoundAE). ISSN Numbers : p-ISSN 2828-6405 | e-ISSN 2828-5050