Characterization of Thermal Waters Origin from the Back Arc Lampung Province, Indonesia: An Evaluation of Stable Isotopes, Major Elements, and Li/Cl Ratios

Authors

  • Mochamad Iqbal Graduate School of Engineering, Kyoto University
  • Brenda Ariesty Kusumasari Graduate School of Engineering, Kyoto University
  • Tedi Atmapradhana Graduate School of Engineering, Kyoto University
  • Afi Candra Trinugraha Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology (NAIST)
  • Endah Kinarya Palupi Graduate of Science and Technology, Kwansei Gakuin University https://orcid.org/0000-0001-7755-5424
  • Ikhsan Maulidi Graduate School of Natural Science & Technology, Kanazawa University

DOI:

https://doi.org/10.58524/ijhes.v2i1.171

Keywords:

thermal water, major elements, stable isotopes, chlorine-lithium ratio, sumatra

Abstract

This study reports chemical and isotope data from thermal water samples collected in the Natar area (back-arc Lampung province), Indonesia. Based on the geologic map, Lampung-Panjang Fault is the source of this thermal water appearance with Quaternary volcanic and metamorphic rock in the basement. It is located close to the Quaternary extinct volcano (Mount Betung) around 20 km to the southwest. Therefore, this study aims to provide information on geochemical characteristics and the origin of thermal waters in Natar's non-volcanic area. Variables such as stable isotopes, major, and Li/Cl ratios were analyzed. Furthermore, the thermal waters collected from a well in a different location have a moderate temperature ranging from 47°C to 54°C with 6.23 pH. Lithium and Chloride concentrations as well as Isotope δ18O and δD ranges from 0.02 mg/L to 0.04 mg/L, 5.19 mg/L to 46.12 mg/L, -5.26 ‰ to -2.65 ‰, and -5.26 ‰ to -2.65 ‰, respectively. The stable isotope showed that the thermal water samples have a shift value of ó18O similar to hydrothermal water. The result also has a positive correlation with the distribution of the Li/Cl ratio plotted close to the magmatic water. Consequently, the Natar hot springs may have formed due to the magmatic process of Mount Betung Quaternary with a lower temperature than an active volcano.

Author Biographies

  • Mochamad Iqbal, Graduate School of Engineering, Kyoto University
    Geological Engineering, Institut Teknologi Sumatera, Indonesia
  • Afi Candra Trinugraha, Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology (NAIST)
    Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Indonesia
  • Ikhsan Maulidi, Graduate School of Natural Science & Technology, Kanazawa University
    Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Syiah Kuala, Indonesia

References

Anuar, M. N. A., Arifin, M. H., Baioumy, H., & Nawawi, M. (2021). A geochemical comparison between volcanic and non-volcanic hot springs from East Malaysia: Implications for their origin and geothermometry. Journal of Asian Earth Sciences, 217(August 2020), 104843. https://doi.org/10.1016/j.jseaes.2021.104843

Briel, B. L. I. (1993). Documentation of a Multiple Technique Computer Program for Plotting Major Ion Composition of Natural Waters.

Bronto, S., Asmoro, P., Hartono, G., & Sulistiyono, S. (2012). Evolution of Rajabasa Volcano in Kalianda Area and Its Vicinity, South Lampung Regency. Indonesian Journal on Geoscience, 7(1), 11–25. https://doi.org/10.17014/ijog.v7i1.132

Darmawan, I. G. B., Setijadji, L. D., & Wintolo, D. (2015). Geology and Geothermal System in Rajabasa Volcano South Lampung Regency, Indonesia (Approach to Field Observations, Water Geochemistry and Magnetic Method). Proceedings World Geothermal Congress 2015, April, 1–12.

Deon, F., Förster, H. J., Brehme, M., Wiegand, B., Scheytt, T., Moeck, I., Jaya, M. S., & Putriatni, D. J. (2015). Geochemical/hydrochemical evaluation of the geothermal potential of the Lamongan volcanic field (Eastern Java, Indonesia). Geothermal Energy, 3(1), 1–21. https://doi.org/10.1186/s40517-015-0040-6

Faure, G. (1986). Isotope systematics of two component mixtures. In Principles of Isotope Geology (2nd ed., pp. 141–153). John Wiley & Sons.

H Fujita Y, N. (2014). Rare Earth Elements and Sr-Nd-Pb Isotopic Analyses of the Arima Hot Spring Waters, Southwest Japan: Implications for Origin of the Arima-type Brine. Journal of Geology & Geosciences, 3(4). https://doi.org/10.4172/2329-6755.1000161

Hanuš, V., Špičák, A., & Vaněk, J. (1996). Sumatran segment of the Indonesian subduction zone: Morphology of the Wadati-Benioff zone and seismotectonic pattern of the continental wedge. Journal of Southeast Asian Earth Sciences, 13(1), 39–60. https://doi.org/10.1016/0743-9547(96)00004-9

Hariyono, E., & S, L. (2018). The Characteristics of Volcanic Eruption in Indonesia. In Volcanoes – Geological and Geophysical Setting, Theoretical Aspects and Numerical Modeling, Applications to Industry and Their Impact on Human Health. https://doi.org/10.5772/intechopen.71449

Hochstein, M. P., & Sudarman, S. (1993). Geothermal resources of Sumatra. Geothermics, 22(3), 181–200. https://doi.org/10.1016/0375-6505(93)90042-L

Hosono, T., Yamada, C., Manga, M., Wang, C. Y., & Tanimizu, M. (2020). Stable isotopes show that earthquakes enhance permeability and release water from mountains. Nature Communications, 11(1), 1–9. https://doi.org/10.1038/s41467-020-16604-y

Idroes, R., Yusuf, M., Saiful, S., Alatas, M., Subhan, S., Lala, A., Muslem, M., Suhendra, R., Idroes, G. M., Marwan, M., & Mahlia, T. M. I. (2019). Geochemistry exploration and geothermometry application in the North Zone of Seulawah Agam, Aceh Besar District, Indonesia. Energies, 12(23). https://doi.org/10.3390/en12234442

Ii, H., Kitagawa, H., Kubohara, T., & Machida, I. (2019). Characteristic of water chemistry for arima type deep thermal water in the Kinokawa River catchment, Kii Peninsula, Japan. International Journal of GEOMATE, 17(62), 158–166. https://doi.org/10.21660/2019.62.7156

Iqbal, M., Juliarka, B. R., Ashuri, W., & Farishi, B. Al. (2019). Hydrogeochemistry of Natar and Cisarua Hot springs in South Lampung, Indonesia. Journal of Geoscience, Engineering, Environment, and Technology, 4(3), 178. https://doi.org/10.25299/jgeet.2019.4.3.4070

Jansen, D., Sihombing, P., Harbowo, D. G., Priadi, B., & Ardhianto, L. (2021). Chemostratigraphy of Paleozoic Carbonate in Natar, South Lampung, Indonesia, 1–4.

Kazahaya, K., Takahashi, M., Yasuhara, M., Nishio, Y., Inamura, A., Morikawa, N., Sato, T., Takahashi, H. A., Kitaoka, K., Ohsawa, S., Oyama, Y., Ohwada, M., Tsukamoto, H., Horiguchi, K., Tosaki, Y., & Kirita, T. (2014). 西南日本におけるスラブ起源深部流体の分布と特徴. 日本水文科学会誌, 44(1), 3–16. https://doi.org/10.4145/jahs.44.3

Kumar, S. K., Rammohan, V., Sahayam, J. D., & Jeevanandam, M. (2009). Assessment of groundwater quality and hydrogeochemistry of Manimuktha River basin, Tamil Nadu, India. Environmental Monitoring and Assessment, 159(1–4), 341–351. https://doi.org/10.1007/s10661-008-0633-7

Kusuda, C., Iwamori, H., Nakamura, H., Kazahaya, K., & Morikawa, N. (2014). Arima hot spring waters as a deep-seated brine from subducting slab. Earth, Planets and Space, 66(1), 119. https://doi.org/10.1186/1880-5981-66-119

Kusumayudha, S. B., Lestari, P., & Paripurno, E. T. (2018). Eruption characteristic of the sleeping volcano, Sinabung, North Sumatera, Indonesia, and SMS gateway for disaster early warning system. Indonesian Journal of Geography, 50(1), 70–77. https://doi.org/10.22146/ijg.17574

Lange, D., Tilmann, F., Henstock, T., Rietbrock, A., Natawidjaja, D., & Kopp, H. (2018). Structure of the central Sumatran subduction zone revealed by local earthquake travel-time tomography using an amphibious network. Solid Earth, 9(4), 1035–1049. https://doi.org/10.5194/se-9-1035-2018

Lin, J. Y., Sibuet, J. C., Hsu, S. K., & Wu, W. N. (2014). Could a Sumatra-like megathrust earthquake occur in the south Ryukyu subduction zone? Earth, Planets and Space, 66(1), 1–8. https://doi.org/10.1186/1880-5981-66-49

Liu, S., Suardi, I., Xu, X., Yang, S., & Tong, P. (2021). The Geometry of the Subducted Slab Beneath Sumatra Revealed by Regional and Teleseismic Traveltime Tomography. Journal of Geophysical Research: Solid Earth, 126(1), 1–29. https://doi.org/10.1029/2020JB020169

Malod, J. A., Karta, K., Beslier, M. O., & Zen, M. T. (1995). From normal to oblique subduction: Tectonic relationships between Java and Sumatra. Journal of Southeast Asian Earth Sciences, 12(1–2), 85–93. https://doi.org/10.1016/0743-9547(95)00023-2

Masuda, H., Sakai, H., & Chiba, H. (1985). Geochemistry in Arima and its vicinity of Na–Ca–Cl–HCO₃ type waters, western Kinki district, Japan. Geochemical Journal, 19(1), 149–162.

Matsubaya, O., Sakai, H., Kusachi, I., & Satake, H. (1973). Hydrogen and oxygen isotopic ratios and major element chemistry of Japanese thermal water systems. Geochemical Journal, 7(3), 123–151. https://doi.org/10.2343/geochemj.7.123

McCaffrey, R. (2009). The tectonic framework of the Sumatran subduction zone. Annual Review of Earth and Planetary Sciences, 37, 345–366. https://doi.org/10.1146/annurev.earth.031208.100212

Meredith, K., Moriguti, T., Tomascak, P., Hollins, S., & Nakamura, E. (2013). The lithium, boron and strontium isotopic systematics of groundwaters from an arid aquifer system. Geochimica et Cosmochimica Acta, 112, 20–31. https://doi.org/10.1016/j.gca.2013.02.022

Millot, R., Hegan, A., & Negrel, P. (2012). Geothermal waters from the Taupo Volcanic Zone, New Zealand: Li, B, and Sr isotopes characterization. Applied Geochemistry, 27, 677–688. https://doi.org/10.1016/j.apgeochem.2011.12.015

Morikawa, N., Kazahaya, K., Masuda, H., Ohwada, M., Nakama, A., Nagao, K., & Sumino, H. (2008). Relationship between geological structure and helium isotopes in deep groundwater from the Osaka Basin. Geochemical Journal, 42(1), 61–74. https://doi.org/10.2343/geochemj.42.61

Morikawa, N., Kazahaya, K., Takahashi, M., Inamura, A., Takahashi, H. A., Yasuhara, M., Ohwada, M., Sato, T., Nakama, A., Handa, H., Sumino, H., & Nagao, K. (2016). Widespread distribution of ascending fluids transporting mantle helium in the fore-arc region. Geochimica et Cosmochimica Acta, 182, 173–196. https://doi.org/10.1016/j.gca.2016.03.017

Mulyasari, R., Utama, H. W., & Haerudin, N. (2019). Geomorphology study on the Bandar Lampung Capital City. IOP Conference Series: Earth and Environmental Science, 279(1). https://doi.org/10.1088/1755-1315/279/1/012026

Nakada, S., Maeno, F., Yoshimoto, M., Hokanishi, N., Shimano, T., Zaennudin, A., & Iguchi, M. (2019). Eruption scenarios of active volcanoes in Indonesia. Journal of Disaster Research, 14(1), 40–50. https://doi.org/10.20965/JDR.2019.P0040

Nakamura, H., Chiba, K., Chang, Q., Morikawa, N., Kazahaya, K., & Iwamori, H. (2016). Origin of the Arima-type and Associated Spring Waters in the Kinki District, Southwest Japan. Journal of Geology & Geophysics, 5(2), 240. https://doi.org/10.4172/2381-8719.1000240

Nazri, M. A. A., Tan, L. W., Kasmin, H., Syafalni, S., & Abustan, I. (2016). Geophysical and Hydrochemical Characteristics of Groundwater at Kerian Irrigation Scheme. IOP Conference Series: Materials Science and Engineering, 136(1). https://doi.org/10.1088/1757-899X/136/1/012070

Nishimura, S., Nishida, J., Yokoyama, T., & Hehuwat, F. (1986). Neo-tectonics of the Strait of Sunda, Indonesia. Journal of Southeast Asian Earth Sciences, 1(2), 81–91. https://doi.org/10.1016/0743-9547(86)90023-1

Nishio, Y., Okamura, K., Tanimizu, M., Ishikawa, T., & Sano, Y. (2010). Lithium and strontium isotopic systematics of waters around Ontake volcano, Japan. Earth and Planetary Science Letters, 297(3–4), 567–576. https://doi.org/10.1016/j.epsl.2010.07.008

Nukman, M., & Hochstein, M. P. (2019). The Sipoholon Geothermal Field and adjacent geothermal systems. Journal of Asian Earth Sciences, 170, 316–328. https://doi.org/10.1016/j.jseaes.2018.11.007

Oi, T., Ikeda, K., Nakano, M., Ossaka, T., & Ossaka, J. (1996). Boron isotope geochemistry of hot spring waters in Ibusuki. Geochemical Journal, 30(5), 273–287. https://doi.org/10.2343/geochemj.30.273

Ravikumar, P., & Somashekar, R. K. (2017). Principal component analysis and hydrochemical facies characterization. Applied Water Science, 7(2), 745–755. https://doi.org/10.1007/s13201-015-0287-x

Riogilang, H., Itoi, R., & Taguchi, S. (2012). Origin of Hot Spring Water in the Kotamobagu Geothermal Field. 日本地熱学会誌, 34(3), 151–159.

Sabara, Z., Umam, R., Prianto, K., Junaidi, R., & Rahmat, A. (2021). Anak Krakatau mountain tsunami phenomenon. IOP Conference Series: Earth and Environmental Science, 739(1). https://doi.org/10.1088/1755-1315/739/1/012036

Sadashivaiah, C., Ramakrishnaiah, C. R., & Ranganna, G. (2008). Hydrochemical analysis of groundwater quality. International Journal of Environmental Research and Public Health, 5(3), 158–164. https://doi.org/10.3390/ijerph5030158

Singh, K. K., Tewari, G., & Kumar, S. (2020). Evaluation of Groundwater Quality for Irrigation Purposes. Journal of Chemistry, 2020. https://doi.org/10.1155/2020/6924026

Takahashi, M., Urai, M., Yasukawa, K., Muraoka, H., Matsuda, K., & Akasako, H. (2000). Geochemistry of Hot Spring Waters at Bajawa Area, Central Flores, Indonesia. Western Pacific Earth Sciences, 1807–1812.

Tanaka, K., Koizumi, M., Seki, R., & Ikeda, N. (1984). Geochemical study of Arima hot-spring waters. Geochemical Journal, 18, 173–180.

Tang, Y. J., Zhang, H. F., & Ying, J. F. (2007). Review of the lithium isotope system as a geochemical tracer. International Geology Review, 49(4), 374–388. https://doi.org/10.2747/0020-6814.49.4.374

Tanimizu, M., Sugimoto, N., Hosono, T., Kuribayashi, C., Morimoto, T., Ito, A., & Umam, R. (2021). Application of B and Li isotope systematics in groundwater disturbance. Geochemical Journal, 55, 241–250. https://doi.org/10.2343/geochemj.2.0633

Tomascak, P. B. (2004a). Developments in the understanding and application of lithium isotopes. Reviews in Mineralogy and Geochemistry, 55(1), 153–195. https://doi.org/10.2138/gsrmg.55.1.153

Tomascak, P. B. (2004b). Developments in the understanding and application of lithium isotopes. Reviews in Mineralogy and Geochemistry, 55(1), 153–195. https://doi.org/10.2138/gsrmg.55.1.153

Triani, Umam, R., & Sismanto. (2021). 3D Modeling of Subsurface Lawanopo Fault. Indonesian Journal of Geography, 53(1), 67–77. https://doi.org/10.22146/IJG.50878

Umam, R., Tanimizu, M., Nakamura, H., Nishio, Y., Nakai, R., Sugimoto, N., Mori, Y., Kobayashi, Y., Ito, A., Wakaki, S., Nagaishi, K., & Ishikawa, T. (2022). Lithium isotope systematics of Arima hot spring waters. Geochemical Journal, 56(5), 8–17. https://doi.org/10.2343/geochemj.GJ22015

Umar Kura, N., Firuz Ramli, M., Azmin Sulaiman, W. N., Ibrahim, S., Zaharin Aris, A., & Mustapha, A. (2013). Evaluation of factors influencing groundwater chemistry. International Journal of Environmental Research and Public Health, 10(5), 1861–1881. https://doi.org/10.3390/ijerph10051861

Utama, H. W., Mulyasari, R., & Said, Y. M. (2021). Geothermal Potential on Sumatra Fault System. Jurnal Geofisika Eksplorasi, 7(2), 126–137. https://doi.org/10.23960/jge.v7i2.128

You, C. F., Castillo, P. R., Gieskes, J. M., Chan, L. H., & Spivack, A. J. (1996). Trace element behavior in hydrothermal experiments. Earth and Planetary Science Letters, 140(1–4), 41–52. https://doi.org/10.1016/0012-821X(96)00049-0

Downloads

Published

2023-02-04

How to Cite

Iqbal, M., Kusumasari, B. A., Atmapradhana, T., Trinugraha, A. C., Palupi, E. K., & Maulidi, I. (2023). Characterization of Thermal Waters Origin from the Back Arc Lampung Province, Indonesia: An Evaluation of Stable Isotopes, Major Elements, and Li/Cl Ratios. International Journal of Hydrological and Environmental for Sustainability, 2(1), 1-12. https://doi.org/10.58524/ijhes.v2i1.171