B-Li-Cl Trend Line Can Distinguish The Dominance of Hydrothermal Water and Surface Water: A Case Study of Geothermal in Tengchong, Southwestern China

Authors

  • Feng-Yun Huang Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology
  • Shakal Khan Korai Department of Biology, School of Life Sciences, Hubei University

DOI:

https://doi.org/10.58524/3r1t2184

Abstract

The Boron-Lithium-Chlorine (B-Li-Cl) trend line serves as a valuable geochemical tool for distinguishing the dominance of hydrothermal water and surface water in geothermal environments. In this study, we applied the B-Li-Cl trend line to analyze the geochemical characteristics of water samples from the Tengchong geothermal area in Southwestern China. Our results reveal distinct patterns that differentiate hydrothermal water from surface water, offering insights into the geochemical processes and interactions occurring in this region. The lower Cl/Li and Cl/B ratio values of meteoric water with a Cl concentration of <10 (mg/L) indicate that mixing occurs not only when migrating upwards, but also inwards. The absence of a trend formed at a Cl concentration of <10 (mg/L) proves that the Cl concentration can be diluted by mixing with meteoric water. Meanwhile, the concentrations of Li > 100 (µg/L) and B > 1 (mg/L) form a downward trend from magmatic water, while the concentration of B < 1 (mg/L) has a downward trend from meteoric water. Both interpretations confirm that the behaviour of Lithium and Boron towards temperature changes has the same tendency, which can illustrate the origin of hydrothermal water formation.

References

Amita, K., Ohsawa, S., Nishimura, K., Yamada, M., Mishima, T., Kazahaya, K., Morikawa, N., and Hirajima, T. (2014). Origin of saline waters distributed along the Median Tectonic Line in southwest Japan: Hydrogeochemical investigation on possibility of derivation of metamorphic dehydrated fluid from subducting oceanic plate. Journal of Japanese Association of Hydrological Sciences, 44(1), 17–38. https://doi.org/10.4145/jahs.44.17

Arienzo, I., Liotta, M., Brusca, L., D Antonio, M., Lupone, F., and Cucciniello, C. (2020). Analytical method for lithium isotopes determination by thermal ionization mass spectrometry: A useful tool for hydrogeochemical applications. Water (Switzerland), 12(8). https://doi.org/10.3390/W12082182

Guo, Q., and Wang, Y. (2012). Geochemistry of hot springs in the Tengchong hydrothermal areas, Southwestern China. Journal of Volcanology and Geothermal Research, 215–216, 61–73. https://doi.org/10.1016/j.jvolgeores.2011.12.003

Han, J. L., Han, F. Q., Hussain, S. A., Liu, W. Y., Nian, X. Q., and Mao, Q. F. (2018). Erratum: Origin of boron and brine evolution in saline springs in the Nangqen Basin, Southern Tibetan Plateau (Geofluids (2018) 2018 (1985784) DOI: 10.1155/2018/1985784). Geofluids, 2018. https://doi.org/10.1155/2018/6761910

Hendry, M. J., Wassenaar, L. I., and Kotzer, T. (2000). Chloride and chlorine isotopes (36Cl and δ37Cl) as tracers of solute migration in a thick, clay-rich aquitard system. Water Resources Research, 36(1), 285–296. https://doi.org/10.1029/1999WR900278

Iqbal, M., Kusumasari, B. A., Atmapradhana, T., Trinugraha, A. C., Palupi, E. K., and Maulidi, I. (2023). Characterization of Thermal Waters Origin from the Back Arc Lampung Province , Indonesia : An Evaluation of Stable Isotopes , Major Elements , and Li / Cl Ratios. International Journal of Hydrological and Environmental for Sustainability, 2(1), 1–12.

Iwamori, H. (2007). Transportation of H2O beneath the Japan arcs and its implications for global water circulation. Chemical Geology, 239(3–4), 182–198. https://doi.org/10.1016/j.chemgeo.2006.08.011

Jalili, M., Hosseini, M. S., Ehrampoush, M. H., Sarlak, M., Abbasi, F., and Fallahzadeh, R. A. (2019). Use of Water Quality Index and Spatial Analysis to Assess Groundwater Quality for Drinking Purpose in Ardakan, Iran. Journal of Environmental Health and Sustainable Development, 4(3), 834–842. https://doi.org/10.18502/jehsd.v4i3.1500

Kazahaya, K., Takahashi, M., Yasuhara, M., Nishio, Y., Inamura, A., Morikawa, N., Sato, T., Takahashi, H. A., Kitaoka, K., Ohsawa, S., Oyama, Y., Ohwada, M., Tsukamoto, H., Horiguchi, K., Tosaki, Y., and Kirita, T. (2014). Spatial distribution and feature of slab-related deep-seated fluid in SW Japan. The Japan Society of Hydrology and Water Resources, 44(1), 3–16.

Kusuda, C., Iwamori, H., Nakamura, H., Kazahaya, K., and Morikawa, N. (2014). Arima hot spring waters as a deep-seated brine from subducting slab. Earth, Planets and Space, 66(1), 119. https://doi.org/10.1186/1880-5981-66-119

Meju, M. A., and Le, L. (2002). Geoelectromagneticexploration For Natural Resources:Models, Case Studies and Challenges. Surveys in Geophysics, 23, 133–205.

Meredith, K., Moriguti, T., Tomascak, P., Hollins, S., and Nakamura, E. (2013a). The lithium, boron and strontium isotopic systematics of groundwaters from an arid aquifer system: Implications for recharge and weathering processes. Geochimica et Cosmochimica Acta, 112(May 2020), 20–31. https://doi.org/10.1016/j.gca.2013.02.022

Meredith, K., Moriguti, T., Tomascak, P., Hollins, S., and Nakamura, E. (2013b). The lithium, boron and strontium isotopic systematics of groundwaters from an arid aquifer system: Implications for recharge and weathering processes. Geochimica et Cosmochimica Acta, 112, 20–31. https://doi.org/10.1016/j.gca.2013.02.022

Millot, R., Hegan, A., and Negrel, P. (2012). Geothermal waters from the Taupo Volcanic Zone, New Zealand: Li, B and Sr isotopes characterization. Applied Geochemistry, 27(3), 677–688. https://doi.org/10.1016/j.apgeochem.2011.12.015

Nakajima, J., and Hasegawa, A. (2007). Subduction of the Philippine Sea plate beneath southwestern Japan: Slab geometry and its relationship to arc magmatism. Journal of Geophysical Research: Solid Earth, 112(8), 1–18. https://doi.org/10.1029/2006JB004770

Oi, T., Ikeda, K., Nakano, M., Ossaka, T., and Ossaka, J. (1996). Boron isotope geochemistry of hot spring waters in Ibusuki and adjacent areas, Kagoshima, Japan. Geochemical Journal, 30(5), 273–287. https://doi.org/10.2343/geochemj.30.273

Purnomo, B. J., Pichler, T., and You, C. F. (2016). Boron isotope variations in geothermal systems on Java, Indonesia. Journal of Volcanology and Geothermal Research, 311, 1–8. https://doi.org/10.1016/j.jvolgeores.2015.12.014

Stern, R. J. (2002). Subduction zones. Reviews of Geophysics, 40(4), 3-1-3–38. https://doi.org/10.1029/2001RG000108

Tang, Y. J., Zhang, H. F., and Ying, J. F. (2007). Review of the lithium isotope system as a geochemical tracer. International Geology Review, 49(4), 374–388. https://doi.org/10.2747/0020-6814.49.4.374

Tanimizu, M., Sugimoto, N., Hosono, T., Kuribayashi, C., Morimoto, T., Ito, A., and Umam, R. (2021). Application of B and Li isotope systematics for detecting chemical disturbance in groundwater associated with large shallow inland earthquakes in Kumamoto , Japan. 55, 241–250. https://doi.org/10.2343/geochemj.2.0633

Toki, T., Heshiki, S., and Shinjo, R. (2016). Improved Method for Seawater Lithium Isotopic Ratio Determination Using MC-ICP-MS. Bulletin of the Society of Sea Water Science, Japan, 326–331.

Tsay, A., Zajacz, Z., Ulmer, P., and Sanchez-Valle, C. (2017). Mobility of major and trace elements in the eclogite-fluid system and element fluxes upon slab dehydration. Geochimica et Cosmochimica Acta, 198, 70–91. https://doi.org/10.1016/j.gca.2016.10.038

Umam, R., Cengiz, K., and Said, A. (2024). Application of Major and Trace Elements for Detecting the Origin of Groundwater : Lithium Enrichment in Ain Al-Harrah Hot Spring Influenced by Red Sea , Saudi Arabia. International Journal of Hydrological and Environmental for Sustainability, 3(3), 151–162.

Umam, R., Junaidi, R., Syazali, M., Farid, F., Saregar, A., and Andiyan, A. (2025). Optimization of Piper Trilinier Diagram Using Lithium Isotope Systematics : An Application for Detecting the Contribution of Geothermal Water from Aso Caldera after Earthquake 2016 in Kumamoto Aquifer , Japan. Indonesian Journal of Science & Technology, 10(1), 159–170.

Umam, R., Tanimizu, M., Nakamura, H., Nishio, Y., Nakai, R., Sugimoto, N., Mori, Y., Kobayashi, Y., Ito, A., Wakaki, S., Nagaishi, K., and Ishikawa, T. (2022). Lithium isotope systematics of Arima hot spring waters and groundwaters in Kii Peninsula. Geochemical Journal, 56(5), E8–E17. https://doi.org/10.2343/geochemj.GJ22015

Utama, H. W., Mulyasari, R., and Said, Y. M. (2021). Geothermal Potential on Sumatra Fault System To Sustainable Geotourism in West Sumatra. JGE (Jurnal Geofisika Eksplorasi), 7(2), 126–137. https://doi.org/10.23960/jge.v7i2.128

Vuataz, F. D. (1983). Hydrology, geochemistry and geothermal aspects of the thermal waters from Switzerland and adjacent alpine regions. Journal of Volcanology and Geothermal Research, 19(1–2), 73–97. https://doi.org/10.1016/0377-0273(83)90125-7

Wan, H., Sun, H., Liu, H., and Xiao, Y. (2017). Lithium Isotopic Geochemistry in Subduction Zones: Retrospects and Prospects. Acta Geologica Sinica (English Edition), 91(2), 688–710. https://doi.org/10.1111/1755-6724.13126

Williams, L. B., and Hervig, R. L. (2004). Boron isotope composition of coals: A potential tracer of organic contaminated fluidsEditorial handling by R.S. Harmon. Applied Geochemistry, 19(10), 1625–1636. https://doi.org/10.1016/j.apgeochem.2004.02.007

Wunder, B., Meixner, A., Romer, R. L., Wirth, R., and Heinrich, W. (2005). The geochemical cycle of boron: Constraints from boron isotope partitioning experiments between mica and fluid. Lithos, 84(3–4), 206–216. https://doi.org/10.1016/j.lithos.2005.02.003

Yan, Y., Zhang, Z., Zhou, X., Wang, G., He, M., Tian, J., Dong, J., Li, J., Bai, Y., Zeng, Z., Wang, Y., Yao, B., Xing, G., Cui, S., and Shi, Z. (2024). Geochemical characteristics of hot springs in active fault zones within the northern Sichuan-Yunnan block: Geochemical evidence for tectonic activity. Journal of Hydrology, 635(December 2023), 131179. https://doi.org/10.1016/j.jhydrol.2024.131179

You, C. F., Castillo, P. R., Gieskes, J. M., Chan, L. H., and Spivack, A. J. (1996). Trace element behavior in hydrothermal experiments: Implications for fluid processes at shallow depths in subduction zones. Earth and Planetary Science Letters, 140(1–4), 41–52. https://doi.org/10.1016/0012-821X(96)00049-0

Zandvakili, Z., Nishio, Y., and Sano, Y. (2024). Geofluid behavior prior to the 2018 Hokkaido Eastern Iburi earthquake: insights from groundwater geochemistry. Progress in Earth and Planetary Science, 11(1). https://doi.org/10.1186/s40645-024-00635-w

Zheng, Y.-F., and Hermann, J. (2014). Geochemistry of continental subduction-zone fluids. Earth, Planets and Space, 66(1), 93. https://doi.org/10.1186/1880-5981-66-93

Downloads

Published

2025-02-28

How to Cite

Huang, F.-Y., & Korai, S. K. (2025). B-Li-Cl Trend Line Can Distinguish The Dominance of Hydrothermal Water and Surface Water: A Case Study of Geothermal in Tengchong, Southwestern China. International Journal of Hydrological and Environmental for Sustainability, 4(1), 42-54. https://doi.org/10.58524/3r1t2184