Production and Characterization of Bioethanol from Tobacco Stalks via Acid Hydrolysis and Fermentation
DOI:
https://doi.org/10.58524/ijhes.v5i1.1030Abstract
The increasing demand for energy and the environmental impacts of fossil fuel consumption have encouraged the development of renewable and sustainable energy sources. Bioethanol derived from lignocellulosic biomass represents a promising alternative fuel due to its renewability and reduced competition with food resources. This study investigates the potential of tobacco stalks, an underutilized agricultural residue, as a feedstock for bioethanol production through acid hydrolysis and fermentation processes. Dried tobacco stalks were hydrolyzed using 1 M sulfuric acid at 110 °C for 3 h to produce fermentable sugars, followed by batch fermentation using Saccharomyces cerevisiae with variations in yeast concentration and fermentation time. The fermentation products were purified by simple distillation and characterized using refractometry, density measurement, GC–MS, and bomb calorimetry. The hydrolysis process yielded a sugar concentration of 7.6%. Refractometric analysis indicated ethanol concentrations in the range of 64–68% (v/v), while density measurements suggested lower effective ethanol purity due to residual water and non-ethanol components. GC–MS analysis confirmed ethanol as the dominant compound, with relative contents ranging from approximately 52% to 73%, accompanied by acetic acid and minor volatile by-products. The calorific value of the produced bioethanol ranged from 4,825 to 4,983 kcal/kg and increased with fermentation time. The results demonstrate that tobacco stalks have considerable potential as a lignocellulosic feedstock for bioethanol production, although further process optimization is required to enhance ethanol purity and overall conversion efficiency.
References
Ahmed, N. (2022). Bioethanol production from lignocellulosic and macroalgae feedstock and its separation by membrane distillation: Effect of pretreatments on reducing sugar and bioethanol yield (Doctoral dissertation, University of Wollongong).
Assaye, M., Tamirat, B., & Fekadu, B. (2021). Ethanol concentration and calorific value of some local distilled Ethiopian alcohol (Areki): An energy potential assessment. Cogent Engineering, 8(1). https://doi.org/10.1080/23311916.2021.1979444
Bento, C. S. A., de Sousa, H. C., & Braga, M. E. M. (2024). Measurement of ethanol concentration for monitoring solvent exchange during alcogel preparation. Journal of Non-Destructive Evaluation, 43, Article 12. https://doi.org/10.1007/s10921-024-00971-1
Bragatto, J. N. D. D. B. L. F. (2016). Tobacco stalk as promising feedstock for second generation ethanol production. Bioenergia em Revista: Diálogos, 6(2).
Dila, T. L. L., Yenti, S. R., & Muria, S. R. (2020). Pengaruh variasi konsentrasi H₂SO₄ dan waktu hidrolisis dalam pembuatan glukosa dari bungkil inti sawit (BIS). JOM FTeknik, 7(2), 1–5.
Ghazali, M. F. S. M., Mustafa, M., Zainudin, N. A. I. M., & Abd Aziz, N. A. (2021). A simple method for the determination of bioethanol from lignocellulosic materials using gas chromatography–flame ionisation detector (GC-FID). Malaysian Journal of Microbiology, 18(1), 123–127. https://doi.org/10.21161/mjm.211204
Godoy, C. A., Valderrama, P., Furtado, A. C., & Boroski, M. (2022). Analysis of HMF and furfural in hydrolyzed lignocellulosic biomass by HPLC-DAD-based method using FDCA as internal standard. MethodsX, 9, 101774. https://doi.org/10.1016/j.mex.2022.101774
Han, Y., Li, J., Wang, B., Xu, J., & Zeng, J. (2015). Improved enzymatic hydrolysis of tobacco stalk by steam explosion and thread rolling pretreatments. Cellulose Chemistry and Technology, 49, 181–185.
Handayani, S. S., & Amrullah, A. (2018). Ekstraksi selulosa batang tembakau sebagai persiapan produksi bioetanol. Jurnal Penelitian Pendidikan IPA, 4(2). https://doi.org/10.29303/jppipa.v4i2.130
Hashem, M., Alamri, S. A., Asseri, T. A. Y., Moustafa, Y. S., Lyberatos, G., & Ntaikou, I. (2021). On the optimization of fermentation conditions for enhanced bioethanol yields from starchy biowaste via yeast co-cultures. Sustainability, 13(4), 1890. https://doi.org/10.3390/su13041890
Holechek, J. L., Geli, H. M. E., Sawalhah, M. N., & Valdez, R. (2022). A global assessment: Can renewable energy replace fossil fuels by 2050? Sustainability, 14(8), 4792. https://doi.org/10.3390/su14084792
Hu, N., Liu, X., Wei, S., Yao, J., Wang, W., Liu, B., … Wang, L. (2024). Current status and future prospects of pretreatment for tobacco stalk lignocellulose. Frontiers in Bioengineering and Biotechnology, 12, 1465419. https://doi.org/10.3389/fbioe.2024.1465419
Hossain, N., Zaini, J. H., & Mahlia, T. M. I. (2017). A review of bioethanol production from plant-based waste biomass by yeast fermentation. International Journal of Technology, 8(1), 5–18.
IEA. (2024). Renewables 2024: Analysis and forecast to 2030. International Energy Agency. https://www.iea.org/reports/renewables-2024
Jain, S., & Kumar, S. (2024). A comprehensive review of bioethanol production from diverse feedstocks: Current advancements and economic perspectives. Energy, 296, 131130. https://doi.org/10.1016/j.energy.2024.131130
Jiang, H., Nie, J., Zeng, L., Zhu, F., Gao, Z., Zhang, A., … Chen, Y. (2024). Selective removal of hemicellulose by diluted sulfuric acid assisted by aluminum sulfate. Molecules, 29(9), 2027. https://doi.org/10.3390/molecules29092027
Ketut, N., Edra, R., Ernawati, D., & Sari, K. N. (2025). Optimizing batch distillation parameters for enhanced bioethanol purification from fermentation. Green Chemistry Letters and Reviews, 18(1), 1–17. https://doi.org/10.1080/17518253.2025.2459724
Morais, J. R., Costa, I. O., Padilha, C. E., Rios, N. S., & Santos, E. S. D. (2025). Improving reusability of biocatalysts by exploiting cross-linked enzyme aggregates (CLEAs) with commercial cellulolytic cocktails for hydrolysis of green coconut waste. Sustainability, 17(9), 4221. https://doi.org/10.3390/su17094221
Nguyen, H. P., Le, H. D., & Le, V. V. M. (2015). Effect of ethanol stress on fermentation performance of Saccharomyces cerevisiae cells immobilized on Nypa fruticans leaf sheath pieces. Food Technology and Biotechnology, 53(1), 96–101. https://doi.org/10.17113/ftb.53.01.15.3617
Plugatar, Y., Johnson, J. B., Timofeev, R., Korzin, V., Kazak, A., Nekhaychuk, D., Borisova, E., & Rotanov, G. (2023). Prediction of ethanol content and total extract using densimetry and refractometry. Beverages, 9(2), Article 31. https://doi.org/10.3390/beverages9020031
Quispe, A. P. B., Sánchez, P. C., Mendoza, M. G., Scheineder, S. H., Purihuaman, M. S., Sipion, K. R., … Llanos, S. A. V. (2025). Use of lignocellulosic biomass: Pretreatment and fermentation for the production of bioethanol. Chemical Engineering Transactions, 116, 811–816.
Saetang, N., & Tipnee, S. (2022). Influence of nanoparticles inclusion on the production of bioethanol from corn stalks and leaves. Maejo International Journal of Energy and Environmental Communication, 4(2), 23–28.
Saletnik, B., Fiedur, M., Kwarciany, R., Zaguła, G., & Bajcar, M. (2024). Pyrolysis as a method for processing of waste from production of cultivated tobacco (Nicotiana tabacum L.). Sustainability, 16(7), 2749. https://doi.org/10.3390/su16072749
Sant, A., da Silva, A., Teixeira, R., Teixeira, S., Moutta, R., Ferreira-Leitão, V., … Bon, E. (2013). Sugarcane and woody biomass pretreatments for ethanol production. In Y. Yun (Ed.), Alcohol fuels (pp. 47–88). IntechOpen. https://doi.org/10.5772/53378
Świątek, K., Gaag, S., Klier, A., Kruse, A., Sauer, J., & Steinbach, D. (2020). Acid hydrolysis of lignocellulosic biomass: Sugars and furfurals formation. Catalysts, 10(4), 437. https://doi.org/10.3390/catal10040437
Tayyab, M., Noman, A., Islam, W., Waheed, S., Arafat, Y., Ali, F., … Lin, W. (2018). Bioethanol production from lignocellulosic biomass by environment-friendly pretreatment methods: A review. Applied Ecology and Environmental Research, 16(1).
Ubaidilah, S., Irfan, A., Sunaryo, Yongthong, K., Sampurno, R. M., & Radhitya, B. D. (2025). Sustainable bioethanol production from Carica pubescens peel waste: Optimization of acid hydrolysis and fermentation time. International Journal of Hydrological and Environmental for Sustainability, 4(2), 55–62. https://doi.org/10.58524/ijhes.v4i2.771
Vu, P. T., Ramaraj, R., Bhuyar, P., & Unpaprom, Y. (2022). The possibility of aquatic weeds serving as a source of feedstock for bioethanol production: A review. Maejo International Journal of Energy and Environmental Communication, 4(2), 50–63.
Wang, M. L., Choong, Y. M., Su, N. W., & Lee, M. H. (2003). A rapid method for determination of ethanol in alcoholic beverages using gas chromatography. Journal of Food and Drug Analysis, 11(2), 133–140. https://doi.org/10.38212/2224-6614.2710
Wang, Z., Ahmad, W., Zhu, A., Geng, W., Kang, W., Ouyang, Q., & Chen, Q. (2023). Identification of volatile compounds and metabolic pathway during ultrasound-assisted kombucha fermentation by HS-SPME-GC/MS combined with metabolomic analysis. Ultrasonics Sonochemistry, 94, 106339. https://doi.org/10.1016/j.ultsonch.2023.106339
Woźniak, A., Kuligowski, K., Świerczek, L., & Cenian, A. (2025). Review of lignocellulosic biomass pretreatment using physical, thermal and chemical methods for higher yields in bioethanol production. Sustainability, 17, 287. https://doi.org/10.3390/su17010287
Wu, S., Shi, S., Liu, R., Wang, C., Li, J., & Han, L. (2023). The transformations of cellulose after concentrated sulfuric acid treatment and its impact on the enzymatic saccharification. Biotechnology for Biofuels and Bioproducts. https://doi.org/10.1186/s13068-023-02293-4
Yang, Y., Zhang, M., Zhao, J., & Wang, D. (2021). Effects of particle size on biomass pretreatment and hydrolysis performances in bioethanol conversion. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-02169-3
Zhang, C. (2019). Lignocellulosic ethanol: Technology and economics. In Y. Yun (Ed.), Alcohol fuels. IntechOpen. https://doi.org/10.5772/intechopen.86701
Zhang, H., Fu, C., Ren, T., Xie, H., Mao, G., Wang, Z., … Song, A. (2021). Improvement of nicotine removal and ethanol fermentability from tobacco stalk by integration of dilute sulfuric acid presoak and instant catapult steam explosion pretreatment. Frontiers in Bioengineering and Biotechnology, 9, 763549. https://doi.org/10.3389/fbioe.2021.763549
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Foundae (Foundation of Advanced Education)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
