Evaluating multiple time series models for consumer price index forecasting to support national defense decision-making

Authors

  • Muhammad Yusuf Al Habsy Indonesia Defense University
  • Ro'fah Nur Rachmawati Statistics Department, School of Computer Science, Bina Nusantara University, Jakarta 11480, Indonesia
  • Jumadil Saputra Universiti Malaysia Sarawak

DOI:

https://doi.org/10.58524/app.sci.def.v3i3.865

Keywords:

Consumer Price Index, Time Series Model, Inflation Forecasting

Abstract

Price stability, as reflected in the Consumer Price Index (CPI), plays a crucial role in supporting economic resilience and national defense readiness. This study evaluates multiple time series forecasting models, including Error-Trend-Seasonal (ETS), Holt, Holt–Winter, SARIMA, SARIMAX with exogenous variables, and hybrid approaches combining Holt/Holt–Winter with SARIMA, to identify the most accurate method for predicting Indonesia’s CPI. Monthly data from 2017–2022 were analyzed using a training–testing split, and forecasting accuracy was assessed based on RMSE. The results show that the Holt–Winter model outperforms all other approaches, achieving the lowest RMSE value of 1.9159. Residual diagnostics confirm that the Holt–Winter model effectively captures trend and seasonal patterns, with errors behaving close to white noise. These findings highlight the superiority of Holt–Winter in providing reliable CPI forecasts, offering significant implications for economic policy formulation and strategic planning in the context of national resilience.

References

Ahmar, A. S., Singh, P. K., Ruliana, R., Pandey, A. K., & Gupta, S. (2023). Comparison of ARIMA, SutteARIMA, and Holt-Winters, and NNAR Models to Predict Food Grain in India. Forecasting, 5(1). https://doi.org/10.3390/forecast5010006

Alharbi, F. R., & Csala, D. (2022). A Seasonal Autoregressive Integrated Moving Average with Exogenous Factors (SARIMAX) Forecasting Model-Based Time Series Approach. Inventions, 7(4). https://doi.org/10.3390/inventions7040094

Ampountolas, A. (2021). Modeling and Forecasting Daily Hotel Demand: A Comparison Based on SARIMAX, Neural Networks, and GARCH Models. Forecasting, 3(3). https://doi.org/10.3390/forecast3030037

Ballada, C. J. A., Aruta, J. J. B. R., Callueng, C. M., Antazo, B. G., Kimhi, S., Reinert, M., Eshel, Y., Marciano, H., Adini, B., da Silva, J. D., & Verdu, F. C. (2022). Bouncing back from COVID-19: Individual and ecological factors influence national resilience in adults from Israel, the Philippines, and Brazil. Journal of Community and Applied Social Psychology, 32(3). https://doi.org/10.1002/casp.2569

Banaś, J., & Utnik-Banaś, K. (2021). Evaluating a seasonal autoregressive moving average model with an exogenous variable for short-term timber price forecasting. Forest Policy and Economics, 131. https://doi.org/10.1016/j.forpol.2021.102564

Blundell, R., Griffith, R., Levell, P., & O’Connell, M. (2020). Could COVID-19 Infect the Consumer Prices Index?*. Fiscal Studies, 41(2). https://doi.org/10.1111/1475-5890.12229

Elshewey, A. M., Shams, M. Y., Elhady, A. M., Shohieb, S. M., Abdelhamid, A. A., Ibrahim, A., & Tarek, Z. (2023). A Novel WD-SARIMAX Model for Temperature Forecasting Using Daily Delhi Climate Dataset. Sustainability (Switzerland), 15(1). https://doi.org/10.3390/su15010757

Falatouri, T., Darbanian, F., Brandtner, P., & Udokwu, C. (2022). Predictive Analytics for Demand Forecasting - A Comparison of SARIMA and LSTM in Retail SCM. Procedia Computer Science, 200. https://doi.org/10.1016/j.procs.2022.01.298

Goodwin, R., Hamama-Raz, Y., Leshem, E., & Ben-Ezra, M. (2023). National resilience in Ukraine following the 2022 Russian invasion. International Journal of Disaster Risk Reduction, 85. https://doi.org/10.1016/j.ijdrr.2022.103487

Hendri, E.P., & Fadhlia, S. (2024). Times series data analysis: holt-winters model for rainfall prediction in West Java. International Journal of Applied Mathematics, Sciences, and Technology for National Defense, 2(1), 1-8. https://doi.org/10.58524/app.sci.def.v2i1.325

Huang, Y., Xu, C., Ji, M., Xiang, W., & He, D. (2020). Medical service demand forecasting using a hybrid model based on ARIMA and self-adaptive filtering method. BMC Medical Informatics and Decision Making, 20(1). https://doi.org/10.1186/s12911-020-01256-1

Khan, D. M., Ali, M., Iqbal, N., Khalil, U., Aljohani, H. M., Alharthi, A. S., & Afify, A. Z. (2022). Short-Term Prediction of COVID-19 Using Novel Hybrid Ensemble Empirical Mode Decomposition and Error Trend Seasonal Model. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.922795

Li, A., Wei, X., & He, Z. (2020). Robust proof of stake: A new consensus protocol for sustainable blockchain systems. Sustainability (Switzerland), 12(7). https://doi.org/10.3390/su12072824

Majid, W. K., & Dzikria, I. (2023). Comparison of Multiple Linear Regression and Holt-Winter Exponential Smoothing in the Gold Jewelry Pricing Prediction. Procedia of Engineering and Life Science, 4. https://doi.org/10.21070/pels.v4i0.1390

Manigandan, P., Alam, M. S., Alharthi, M., Khan, U., Alagirisamy, K., Pachiyappan, D., & Rehman, A. (2021). Forecasting natural gas production and consumption in united states-evidence from sarima and sarimax models. Energies, 14(19). https://doi.org/10.3390/en14196021

Mohamed, J. (2020). Time Series Modeling and Forecasting of Somaliland Consumer Price Index: A Comparison of ARIMA and Regression with ARIMA Errors. American Journal of Theoretical and Applied Statistics, 9(4). https://doi.org/10.11648/j.ajtas.20200904.18

Nguyen, T. T., Nguyen, H. G., Lee, J. Y., Wang, Y. L., & Tsai, C. S. (2023). The consumer price index prediction using machine learning approaches: Evidence from the United States. Heliyon, 9(10). https://doi.org/10.1016/j.heliyon.2023.e20730

Pournaras, E., Haqqoni, M. G. Al, & Pramana, S. (2022). Implementation of marketplace data in the production of Consumer Price Index in Indonesia. Data Science, 5(2). https://doi.org/10.3233/DS-210037

Punyapornwithaya, V., Jampachaisri, K., Klaharn, K., & Sansamur, C. (2021). Forecasting of Milk Production in Northern Thailand Using Seasonal Autoregressive Integrated Moving Average, Error Trend Seasonality, and Hybrid Models. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.775114

Shinkarenko, V., Hostryk, A., Shynkarenko, L., & Dolinskyi, L. (2021). A forecasting the consumer price index using time series model. SHS Web of Conferences, 107. https://doi.org/10.1051/shsconf/202110710002

Thiruchelvam, L., Dass, S. C., Asirvadam, V. S., Daud, H., & Gill, B. S. (2021). Determine neighboring region spatial effect on dengue cases using ensemble ARIMA models. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-84176-y

Trull, O., García-Díaz, J. C., & Troncoso, A. (2020). Initialization methods for multiple seasonal holt-winters forecasting models. Mathematics, 8(2). https://doi.org/10.3390/math8020268

Wang, Y., Xu, C., Ren, J., Wu, W., Zhao, X., Chao, L., Liang, W., & Yao, S. (2020). Secular seasonality and trend forecasting of tuberculosis incidence rate in China using the advanced error-trend-seasonal framework. Infection and Drug Resistance, 13. https://doi.org/10.2147/IDR.S238225

Wanjuki, T. M., Wagala, A., & Muriithi, D. K. (2022). Evaluating the Predictive Ability of Seasonal Autoregressive Integrated Moving Average (SARIMA) Models using Food and Beverages Price Index in Kenya. European Journal of Mathematics and Statistics, 3(2). https://doi.org/10.24018/ejmath.2022.3.2.100

Xiao, D., & Su, J. (2022). Research on Stock Price Time Series Prediction Based on Deep Learning and Autoregressive Integrated Moving Average. Scientific Programming, 2022. https://doi.org/10.1155/2022/4758698

Yonar, H., Yonar, A., Tekindal, M. A., & Tekindal, M. (2020). Modeling and Forecasting for the number of cases of the COVID-19 pandemic with the Curve Estimation Models, the Box-Jenkins and Exponential Smoothing Methods. Eurasian Journal of Medicine and Oncology, 4(2). https://doi.org/10.14744/ejmo.2020.28273

Downloads

Published

2025-12-30

How to Cite

Al Habsy, M. Y., Nur Rachmawati, R., & Jumadil Saputra. (2025). Evaluating multiple time series models for consumer price index forecasting to support national defense decision-making. International Journal of Applied Mathematics, Sciences, and Technology for National Defense, 3(3), 117-130. https://doi.org/10.58524/app.sci.def.v3i3.865