Shielding innovation for health security: A PHITS-based optimization of Portland material for proton therapy
DOI:
https://doi.org/10.58524/app.sci.def.v3i2.841Keywords:
Cyclotron, PHITS, Portland material, Proton therapy, Radiation attenuationAbstract
Proton therapy is an advanced treatment method for cancer that uses protons to irradiate tumors with high precision. However, the high energy of protons requires effective shielding to protect the surrounding environment and personnel from radiation exposure. In this research, the radiation shielding performance of Portland material was evaluated using the PHITS version 3.351 simulation software. The study focuses on assessing the attenuation of radiation within the cyclotron room under various operational conditions. The effectiveness of radiation shielding made from Portland material in a 230 MeV, 300 NA cyclotron room for a proton therapy facility was investigated. The results from PHITS simulations provide insights into the potential of Portland material in reducing radiation levels in proton therapy rooms, contributing to the safety and efficiency of such facilities. This analysis is essential for optimizing shielding design and ensuring compliance with safety regulations in proton therapy facilities.
References
Baumann, B.C., Mitra, N., Harton, J.G., Xiao, Y., Wojcieszynski, A.P., Gabriel, P.E., Zhong, H., Geng, H., Doucette, A., Wei, J., O'Dwyer, P.J., Bekelman, J.E. & Metz, J.M. (2020). Comparative effectiveness of proton vs photon therapy as part of concurrent chemoradiotherapy for locally advanced cancer. JAMA Oncology, 6(2), 237-246. https://doi.org/10.1001/jamaoncol.2019.4889
Brodin, N.P., Kabarriti, R., Schechter, C.B., Pankuch, M., Gondi, V., Kalnicki, S., Garg, M. K., & Tome, A. (2021). Individualized quality of life benefit and cost-effectiveness estimates of proton therapy for patients with oropharyngeal cancer. Radiation Oncology, 16(19), 1-9. https://doi.org/10.1186/s13014-021-01745-1
Caffrey, J.A., 2017. Radiation shielding for space nuclear propulsion. Oregon State University.
Chen, Z., Dominello, M.M., Joiner, M.C. & Burmeister, J.W. (2023). Proton versus photon radiation therapy: A clinical review. Frontier in Oncology, 13 (2023), 1-28. https://doi.org/10.3389/fonc.2023.1133909
Chen, Z.P., Zhang, Z.Y., Xie, J.S., Guo, Q., & Yu, T. (2019). Metaheuristic optimization method for compact reactor radiation shielding design based on genetic algorithm. Annals of Nuclear Energy, 134 (1), 318–329. https://doi.org/10.1016/j.anucene.2019.06.031
Depuydt, T. (2018). Proton therapy technology evolution in the clinic: impact on radiation protection. Annals of the ICRP, 47(3-4), 177-186. https://doi.org/10.1177/0146645318756252
Detwiler, R.S., McConn, R.J., Grimes, T.F., Upton, S.A. & Engel, E.J. (2021). Data Mining Analysis and Modeling Cell: Compendium of Material Composition Data for Radiation Transport Modeling. Homeland Security. United States of America. https://doi.org/10.2172/1782721
Durante, M. & Cucinotta, F. A. (2011). Physical basis of radiation protection in space travel. Reviews of Modern Physics, 83, 1245–1281. https://doi.org/10.1103/RevModPhys.83.1245
El-Genk, M.S. (2009). Deployment history and design considerations for space reactor power systems. Acta Astronaut. 64, 833–849. http://dx.doi.org/10.1016/j.actaastro.2008.12.016
Garg, T. & Shrigiriwar, A. (2022). Radiation Protection in Interventional Radiology. Indian Journal of Radiology and Imaging, 31(4), 939-945. https://doi.org/10.1055/s-0041-1741049
Giménez, M.A.N. & Lopasso, E.M. (2018). Tungsten carbide compact primary shielding for small medium reactor. Annals of Nuclear Energy, 116, 210–223. https://doi.org/10.1016/j.anucene.2018.02.032
Goitein, M. (1985). Calculation of the uncertainty in the dose delivered during radiation therapy. Medical Physics, 12(5), 608-612. https://doi.org/10.1118/1.595762
Gultom, R.H.A. (2024). Studi Variasi Jenis Material Perisai Radiasi pada Ruang Siklotron 230 MeV 300 nA untuk Fasilitas Terapi Proton menggunakan Program PHITS. Universitas Gadjah Mada. Indonesia
Huang, D., Frank, S.J., Verma, V., Thaker, N.G., Brooks, E.D., Palmer, M.B., Harrison, R.F., Deshmukh, A.A. & Ning, M.S. (2021). Cost-Effectiveness Models of Proton Therapy for Head and Neck: Evaluating Quality and Methods to Date. International Journal of Particle Therapy, 8(1), 339-353. https://doi.org/10.14338/ijpt-20-00058.1
Krishnaraja, A.R. & Guru, K.V. (2021). 3D Printing Concrete: A Review. IOP Conference Series: Materials Science and Engineering. 1055. 012033. https://doi.org/10.1088/1757-899X/1055/1/012033
Matsumoto, S., Koba, Y., Kohno, R., Lee, C., Bolch, W.E. & Kai, M. (2016). Secondary Neutron Doses to Pediatric Patients During Intracranial Proton Therapy: Monte Carlo Simulation of the Neutron Energy Spectrum and its Organ Doses. Health Physics, 110(4), 380-6. https://doi.org/10.1097/hp.0000000000000461
Penfold, S.N. (2022). Radiation shielding assessment of high-energy proton imaging at a proton therapy facility. Medical Physics, 49(8), 5340-5346. https://doi.org/10.1002/mp.15727
Penfold SN. (2022). Radiation shielding assessment of high-energy proton imaging at a proton therapy facility. Medical Physics, 49(8), 5340-5346. https://doi.org10.1002/mp.15727
Popov, A.L., Kolmanovich, D.D., Chukavin, N.N., Zelepukin, I.V., Tikhonowski, G.V., Pastukhov, A.I., Popov, A.A., Shemyakov, A.E., Klimentov, S.M., Ryabov, V.A., Deyev, S.M., Zavestovskaya, I.N. & Kabashin, A.V. (2024). Boron Nanoparticle-Enhanced Proton Therapy: Molecular Mechanisms of Tumor Cell Sensitization. Molecules, 29(16), 3936. https://doi.org/10.3390/molecules29163936
Ramoisiaux, E., Hernalsteens, C., Tesse, R., Gnacadja, E., Pauly, N., Vanwelde, M. & Stichelbaut, F. (2023). Concrete shielding activation for proton therapy systems using BDSIM and FISPACT-II. Journal of Physics: Conference Series, 2420, 012064. https://doi.org/10.1088/1742-6596/2420/1/012064
Reistad, O. & Ølgaard, P.L. (2006). Russian Nuclear Power Plants for Marine Applications. Norwegian Radiation Protection Authority, Norway.
Ruth, T. (2009). Accelerating production of medical isotopes. Nature, 457, 536–537. https://doi.org/10.1038/457536a
Saadi, M.K. & Moadab, N.H. (2019). Optimization of an Am-Be neutron source shield design by advanced materials using MCNP code. Radiation Physics and Chemistry, 158, 109–114. https://doi.org/10.1016/j.radphyschem.2019.01.026
Shang, Y., Yang, G., Su, G., Feng, Y., Ji, Y., Liu, D., Yin, R., Liu, C., & Shen, C. (2020). Multilayer polyethylene/hexagonal boron nitride composites showing high neutron shielding efficiency and thermal conductivity. Composites Communications, 19, 147-153. https://doi.org/10.1016/j.coco.2020.03.007
Tabbakh, F., Hosmane, N.S., Tajudin, S.M., Ghorasi, A., & Morshedian, N. (2022). Using 157Gd doped carbon and 157GdF4 nanoparticles in proton-targeted therapy for effectiveness enhancement and thermal neutron reduction: a simulation study. Scientific Reports, 12, 17404. https://doi.org/10.1038/s41598-022-22429-0
Till, J.E. & Grogan, H.A. (2008). Radiological Risk Assessment and Environmental Analysis. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195127270.001.0001
Yamaji, A. & Sako, K. (1994). Shielding design to obtain compact marine reactor. Journal of Nuclear Science and Technology. 31 (6), 510–520. https://doi.org/10.1080/18811248.1994.9735185
Wan, H., Xu, Z., Shao, J. Sun, Z., Li, L. & Wu, X. (2017). Primary design and optimization of shielding for nuclear medical ship reactor. High Power Laser and Particle Beams, 29 (1), 1–4. https://doi.org/10.11884/HPLPB201729.160235
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Damar Adhiwidya Suyanto, Aditya Tri Oktaviana, Mikael Syväjärvi, Yohannes Sardjono, Gede Sustresna Wijaya, Isman Mulyadi Triatmoko

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.