Cadmium telluride (CdTe) thin-film photovoltaics: A sustainable energy solution to support national energy resilience

Authors

  • Annisa Mutiara Putri Abdul Indonesia Defense University
  • Adhi Kusumadjati Indonesia Defense University
  • Gustav Irgi Aldhiantoro Indonesia Defense University
  • Dinda Rahma Dewi Indonesia Defense University
  • Moh. Hisni Alfan Baarik Indonesia Defense University
  • Cornelia Victoria Anghel Faculty of Resita Engineering Science, Technical University of Cluj-Napoca

DOI:

https://doi.org/10.58524/app.sci.def.v3i2.831

Keywords:

Cadmium Telluride (CdTe), Efficiency Improvement, PLTS, Thin-Film Solar Cells, Waste Management

Abstract

Cadmium Telluride (CdTe) is one of the most promising materials in thin-film solar cell technology; however, its application faces challenges related to efficiency limitations and environmental risks. This study aims to evaluate the performance characteristics, environmental impact, and sustainability potential of CdTe in Solar Power Plant, known in Indonesia as Pembangkit Listrik Tenaga Surya (PLTS) applications. A systematic literature review was conducted, analyzing more than 40 scientific articles and industrial reports published over the last 15 years, covering efficiency, material availability, recycling strategies, and lifecycle assessments. The results indicate that commercial CdTe modules achieve efficiencies between 7–10%, while laboratory devices exceed 22%. CdTe demonstrates superior performance under high temperatures and low-light conditions, but concerns remain regarding cadmium toxicity and the limited availability of tellurium. The study concludes that CdTe holds significant potential as a cost-effective and efficient solar technology, provided that robust recycling systems and responsible material sourcing practices are implemented.

References

Adnan, S., Khan, A. H., Haider, S., & Mahmood, R. (2012). Solar energy potential in Pakistan. Journal of Renewable and Sustainable Energy, 4(3). https://doi.org/10.1063/1.4712051

Ahmad, T., Sobhan, S., & Nayan, M. F. (2016). Comparative analysis between single diode and double diode model of PV cell: Concentrate different parameters effect on its efficiency. Journal of Power and Energy Engineering, 4(3), 31–46. https://doi.org/10.4236/jpee.2016.43004

Costa, S. C. S., Kazmerski, L. L., & Diniz, A. S. A. C. (2021). Impact of soiling on Si and CdTe PV modules: Case study in different Brazil climate zones. Energy Conversion and Management: X, 10, 100084. https://doi.org/10.1016/j.ecmx.2021.100084

Daniel-Durandt, F. M., & Rix, A. J. (2025). The long-term influence of wind and temperature on performance and degradation within a utility-scale photovoltaic plant. IET Renewable Power Generation, 19(1). https://doi.org/10.1049/rpg2.13182

Dizaj, M. H., & Assari, A. (2024). Using tandem method in cadmium-telluride cells to increase solar cell efficiency. Solar Energy.

Fthenakis, V. M. (2004). Life cycle impact analysis of cadmium in CdTe PV production. Renewable and Sustainable Energy Reviews, 8(4), 303–334. https://doi.org/10.1016/j.rser.2003.12.001

Kavlak, G., McNerney, J., & Trancik, J. E. (2014). Metals production requirements for rapid photovoltaics deployment. arXiv preprint. https://arxiv.org/abs/1501.03039

Green, M. A., Dunlop, E. D., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., Bothe, K., Hinken, D., Rauer, M., & Hao, X. (2022). Solar cell efficiency tables (Version 60). Progress in Photovoltaics: Research and Applications, 30(7), 687–701. https://doi.org/10.1002/pip.3595

Green, M. A., Dunlop, E. D., Yoshita, M., Kopidakis, N., Bothe, K., Siefer, G., & Hao, X. (2024a). Solar cell efficiency tables (Version 63). Progress in Photovoltaics: Research and Applications, 32(1), 3–13. https://doi.org/10.1002/pip.3750

Green, M. A., Dunlop, E. D., Yoshita, M., Kopidakis, N., Bothe, K., Siefer, G., Hinken, D., Rauer, M., Hohl-Ebinger, J., & Hao, X. (2024b). Solar cell efficiency tables (Version 64). Progress in Photovoltaics: Research and Applications, 32(7), 425–441. https://doi.org/10.1002/pip.3831

Hanna, F., Nain, P., & Anctil, A. (2023). Material availability assessment using system dynamics: The case of tellurium (2023–2050). Progress in Photovoltaics: Research and Applications, 32(4), 253-266. https://doi.org/10.1002/pip.3760

International Renewable Energy Agency (IRENA). (2022). Enhancing energy resilience: Policies for secure and sustainable power systems. https://www.irena.org/publications

Katepalli, A., Wang, Y., & Shi, D. (2023). Solar harvesting through multiple semi-transparent cadmium telluride solar panels for collective energy generation. Solar Energy, 264, 112047. https://doi.org/10.1016/j.solener.2023.112047

Kranz, L., Gretener, C., Perrenoud, J., Schmitt, R., Pianezzi, F., La Mattina, F., Blösch, P., Cheah, E., Chirilă, A., Fella, C. M., Hagendorfer, H., Jäger, T., Nishiwaki, S., Uhl, A. R., Buecheler, S., & Tiwari, A. N. (2013). Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil. Nature Communications, 4, 2306. https://doi.org/10.1038/ncomms3306

Liu, B., Chen, J., Li, M., & Wang, H. (2023). CdTe PV sustainability study in China: Supply and demand perspective of tellurium. SSRN. https://doi.org/10.2139/ssrn.4782097

Marwede, M., & Reller, A. (2012). Future recycling flows of tellurium from cadmium telluride photovoltaic waste. Resources, Conservation and Recycling, 69, 35–49. https://doi.org/10.1016/j.resconrec.2012.09.006

McNulty, B. A., & Jowitt, S. M. (2022). Byproduct critical metal supply and demand and implications for the energy transition: A case study of tellurium supply and CdTe PV demand. Renewable and Sustainable Energy Reviews, 168, 112838. https://doi.org/10.1016/j.rser.2022.112838

NREL. (2020). CdTe PV: Real and perceived environmental, health and safety risks. National Renewable Energy Laboratory. https://www.nrel.gov/docs/fy03osti/33561.pdf

NREL. (2025). Cadmium telluride photovoltaics perspective paper. U.S. Department of Energy, SETO. https://www.energy.gov/sites/default/files/2025-01/DOE%20SETO%20CdTe%20Photovoltaics%20Perspective%20Paper.pdf

Perkins, C. L., Beall, C., Reese, M. O., & Barnes, T. M. (2017). Two-dimensional cadmium chloride nanosheets in cadmium telluride solar cells. ACS Applied Materials & Interfaces, 9(24), 20561–20565. https://doi.org/10.1021/acsami.7b03613

Rahman, K. S. (2022). Cadmium telluride (CdTe) thin film solar cells. In Comprehensive Guide on Organic and Inorganic Solar Cells (pp. 65–83). Elsevier. https://doi.org/10.1016/B978-0-323-85529-7.00009-8

Rajput, P., Singh, Y. K., Tiwari, G. N., Sastry, O. S., Dubey, S., & Pandey, K. (2018). Life cycle assessment of the 3.2 kW cadmium telluride (CdTe) photovoltaic system in composite climate of India. Solar Energy, 159, 415–422. https://doi.org/10.1016/j.solener.2017.11.060

Ramos-Ruiz, A., Wilkening, J. V., Field, J. A., & Sierra-Alvarez, R. (2017). Leaching of cadmium and tellurium from cadmium telluride (CdTe) thin-film solar panels under simulated landfill conditions. Journal of Hazardous Materials, 336, 57–64. https://doi.org/10.1016/j.jhazmat.2017.03.070

Scarpulla, M. A., McCandless, B., Phillips, A. B., Yan, Y., Heben, M. J., Wolden, C., Xiong, G., Metzger, W. K., Mao, D., Krasikov, D., ... Hayes, S. M. (2023). CdTe-based thin film photovoltaics: Recent advances, current challenges and future prospects. Solar Energy Materials and Solar Cells, 255, 112289. https://doi.org/10.1016/j.solmat.2023.112289

Springfield Center. (2020). Sustainability evaluation of CdTe PV environmental impacts. Technical white paper. https://www.townofmanlius.org/DocumentCenter/View/1795

United States Department of Energy – Solar Energy Technologies Office (USDOE SETO). (2025). A secret ingredient to US clean energy. Metal Tech News. https://www.metaltechnews.com/story/2022/12/07/tech-metals/a-secret-ingredient-to-us-clean-energy/1169.html

United States Geological Survey (USGS). (2008). Tellurium. Mineral Commodity Summary. https://www.usgs.gov

Weng, Y., Yang, G., Li, Y., Xu, L., Chen, X., Song, H., & Zhao, C. X. (2023). Alginate-based materials for enzyme encapsulation. Advances in Colloid and Interface Science, 318, 102957. https://doi.org/10.1016/j.cis.2023.102957

Wichrowska, K., Wosinski, T. Z., Domagala, J. Z., et al. (2019). Structural defects in MBE-grown CdTe heterojunctions for photovoltaic applications. arXiv preprint. https://arxiv.org/abs/1912.11280

Zweibel, K. (2010). The impact of tellurium supply on cadmium telluride photovoltaics. Science, 328(5979), 699–701. https://doi.org/10.1126/science.1182840

Downloads

Published

2025-08-30

How to Cite

Abdul, A. M. P., Kusumadjati, A., Aldhiantoro, G. I., Dewi, D. R., Baarik, M. H. A., & Anghel, C. V. (2025). Cadmium telluride (CdTe) thin-film photovoltaics: A sustainable energy solution to support national energy resilience. International Journal of Applied Mathematics, Sciences, and Technology for National Defense, 3(2), 77-88. https://doi.org/10.58524/app.sci.def.v3i2.831