Power and performance analysis of UUV motor systems with torpedo capabilities using to support the indonesian navy's maritime operations
DOI:
https://doi.org/10.58524/app.sci.def.v3i1.651Keywords:
Battery, Defense, Endurance, Power, UUVAbstract
Unmanned Underwater Vehicles (UUVs) play a crucial role in modern naval operations, particularly in Intelligence, Surveillance, and Reconnaissance (ISR) and Anti-Submarine Warfare (ASW). Their stealth and long-range capabilities provide strategic advantages, yet extended missions pose significant challenges due to power limitations. This study proposes a novel approach to predicting and managing UUV battery capacity for missions lasting up to 30 days. Utilizing OpenModelica, we simulate various operational scenarios by modeling the Direct Current Permanent Magnet (DCPM) motor and its interaction with propulsion systems under different mission profiles including patrol, standby, and attack phases to estimate power consumption and optimize endurance. The results demonstrate key strategies for enhancing UUV autonomy and operational flexibility through advanced power management. These findings contribute to the development of more efficient UUV systems capable of prolonged underwater missions with minimal recharging.References
Arif, W., Jalil, M., Piran, P., Song, H.-K., & Lee, B.-M. (2023). A survey on unmanned underwater vehicles: Challenges, enabling technologies, and future research directions. Sensors, 23(17), 7321, 1-29. https://doi.org/10.3390/s23177321
Zereik, E., Bibuli, M., Mišković, N., Ridao, P., & Pascoal, A. (2018). Challenges and future trends in marine robotics. Annual Reviews in Control, 46, 350-368. https://doi.org/10.1016/j.arcontrol.2018.10.002
de la Vega, J., Riba, J.-R., & Ortega-Redondo, J. A. (2024). Real-time lithium battery aging prediction based on capacity estimation and deep learning methods. Batteries, 10(1), 10, 1-16. https://doi.org/10.3390/batteries10010010
Rupp, C., & Reveles, N. (2020, March). The Rotorcraft Aerodynamics Library: A Modelica library for simulation of rotorcraft aerodynamics and whirl flutter. In Proceedings of the American Modelica Conference, Boulder, Colorado, USA, 111-119. https://doi.org/10.3384/ecp20169111
Wei, D., Hao, P., & Ma, H. (2021). Architecture design and implementation of UUV mission planning. In Proceedings of the 2021 Chinese Control Conference (CCC), Shanghai, China, 1869–1873. https://doi.org/10.23919/CCC52363.2021.9549770
Lee, H.-I., Lee, S., Shin, H.-S., Tsourdos, A., & Fletcher, S. R. (2023). Human factor analysis in robotic and autonomous systems for military applications. Human Aspects of Advanced Manufacturing, 80, 178-188. https://doi.org/10.54941/ahfe1003520
Carlton, J. S. (2018). Marine propellers and propulsion (4th ed.). Butterworth-Heinemann. https://doi.org/10.1016/C2014-0-01177-X
Sweeting, W. J., Hutchinson, A. R., & Savage, S. D. (2011). Factors affecting electric vehicle energy consumption. International Journal of Sustainable Engineering, 4(3), 192-201. https://doi.org/10.1080/19397038.2011.592956
Fritzson, P., Pop, A., Abdelhak, K., Asghar, A., Bachmann, B., Braun, W., Bouskela, D., Braun, R., Buffoni, L., Casella, F., Castro, R., Franke, R., Fritzson, D., Gebremedhin, M., Heuermann, A., Lie, B., Mengist, A., Mikelsons, L., Moudgalya, K., Ochel, L., Palanisamy, A., Ruge, V., Schamai, W., Sjolund, M., Thiele, B., Tinnerholm, J., & Östlund, P. (2020). The OpenModelica integrated environment for modeling, simulation, and model-based development. Modeling, Identification and Control, 41(4), 241-285. https://doi.org/10.4173/mic.2020.4.3
Elmqvist, H., Mattsson, S. E., & Otter, M. (1999). Modelica—a language for physical system modeling, visualization, and interaction. In Proceedings of the IEEE International Symposium on Computer-Aided Control System Design, Kohala Coast, HI, USA, 630-639. https://doi.org/10.1109/CACSD.1999.808720
Vertical Flight Society. (2020, October). UAV dynamics and electric power system modeling and visualization using Modelica and FMI. In Proceedings of the Vertical Flight Society’s 76th Annual Forum & Technology Display, 1-15. https://doi.org/10.4050/F-0076-2020-16289
Wang, C., Chai, Y., & Cui, L. (2022). Research on Energy Supply System Applied to Autonomous Underwater Observation Vehicles. Applied Bionics and Biomechanics, 2022(1), 1-16. https://doi.org/10.1155/2022/3859307
Healey, A. J., & Lienard, D. (1993). Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE journal of Oceanic Engineering, 18(3), 327-339. https://doi.org/10.1109/JOE.1993.236372
Kim, B. J., Yoon, J. Y., Yu, G. C., Ryu, H. S., Ha, Y. C., & Paik, J. K. (2011). Heat flow analysis of an FPSO topside model with wind effect taken into account: A wind-tunnel test and CFD simulation. Ocean Engineering, 38(10), 1130-1140. https://doi.org/10.1016/j.oceaneng.2011.05.004
Feezor, M. D., Sorrell, F. Y., & Blankinship, P. R. (2001). An interface system for autonomous undersea vehicles. IEEE Journal of Oceanic Engineering, 26(4), 522-525. https://doi.org/10.1109/48.972087
Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons. https://doi.org/10.1002/9781119994138
Yang, N., Amini, M. R., Johnson-Roberson, M., & Sun, J. (2018, December). Real-time model predictive control for energy management in autonomous underwater vehicle. In 2018 IEEE Conference on Decision and Control (CDC), 4321-4326. https://doi.org/10.1109/CDC.2018.8619844
Bae, I., & Hong, J. (2023). Survey on the developments of unmanned marine vehicles: Intelligence and cooperation. Sensors, 23(10), 4643. https://doi.org/10.3390/s23104643
Aslam, H., Mudassir, M., Zaider, S. S. H., & Khan, R. (2022, August). Design and Simulation of Electrical Propulsion System of Unmanned Underwater Vehicle Using MATLAB GUI. In 2022 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 918-922. https://doi.org/10.1109/IBCAST54850.2022.9990188
Yang, N., Chang, D., Amini, M. R., Johnson-Robersor, M., & Sun, J. (2019, July). Energy management for autonomous underwater vehicles using economic model predictive control. In 2019 American Control Conference (ACC), 2639-2644. https://doi.org/10.23919/ACC.2019.8815106
Guo, X., Lang, X., Yuan, Y., Tong, L., Shen, B., Long, T., & Mao, W. (2024). Energy management system for hybrid ship: Status and perspectives. Ocean Engineering, 310(1), 118638. https://doi.org/10.1016/j.oceaneng.2024.118638
Zhang, Z., Mi, W., Du, J., Wang, Z., Wei, W., Zhang, Y., ... & Ren, Y. (2022). Design and implementation of a modular UUV simulation platform. Sensors, 22(20), 8043. https://doi.org/10.3390/s22208043
Zhao, X., Wang, L., Zhou, Y., Pan, B., Wang, R., Wang, L., & Yan, X. (2022). Energy management strategies for fuel cell hybrid electric vehicles: Classification, comparison, and outlook. Energy Conversion and Management, 270, 116179. https://doi.org/10.1016/j.enconman.2022.116179
Dastjerdi, R. S., Abbasian, M. A., Saghafi, H., & Vafaie, M. H. (2018). Performance improvement of permanent-magnet synchronous motor using a new deadbeat-direct current controller. IEEE Transactions on Power Electronics, 34(4), 3530-3543. https://doi.org/10.1109/TPEL.2018.2836866
Swaminathan, S., & Saripalli, S. (2018, November). A framework for modeling underwater vehicles in modelica. In 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), 1-6. https://doi.org/10.1109/AUV.2018.8729710
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Gustav Irgi Aldhiantoro, Kuntjoro Pinardi, Adhi Kusumadjati, Annisa Mutiara Putri Abdul, Dinda Rahma Dewi, Moh. Hisni Alfan Baarik, Endah Kinarya Palupi

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.