Power and performance analysis of UUV motor systems with torpedo capabilities using to support the indonesian navy's maritime operations

Authors

  • Gustav Irgi Aldhiantoro Indonesian Defence University https://orcid.org/0009-0007-8714-2149
  • Kuntjoro Pinardi Institut Sains Teknologi Nasional
  • Adhi Kusumadjati Indonesia Defense University
  • Annisa Mutiara Putri Abdul Indonesia Defense University
  • Dinda Rahma Dewi Indonesia Defense University
  • Moh. Hisni Alfan Baarik Indonesia Defense University
  • Endah Kinarya Palupi Kwansei Gakuin University

DOI:

https://doi.org/10.58524/app.sci.def.v3i1.651

Keywords:

Battery, Defense, Endurance, Power, UUV

Abstract

Unmanned Underwater Vehicles (UUVs) play a crucial role in modern naval operations, particularly in Intelligence, Surveillance, and Reconnaissance (ISR) and Anti-Submarine Warfare (ASW). Their stealth and long-range capabilities provide strategic advantages, yet extended missions pose significant challenges due to power limitations. This study proposes a novel approach to predicting and managing UUV battery capacity for missions lasting up to 30 days. Utilizing OpenModelica, we simulate various operational scenarios by modeling the Direct Current Permanent Magnet (DCPM) motor and its interaction with propulsion systems under different mission profiles including patrol, standby, and attack phases to estimate power consumption and optimize endurance. The results demonstrate key strategies for enhancing UUV autonomy and operational flexibility through advanced power management. These findings contribute to the development of more efficient UUV systems capable of prolonged underwater missions with minimal recharging.

Author Biography

  • Gustav Irgi Aldhiantoro, Indonesian Defence University
    Gustav Irgi Aldhiantoro is an undergraduate physics student at Universitas Pertahanan Republic Indonesia (UNHANRI) with a research focus on modeling the electric propulsion system of unmanned submarines using OpenModelica. His research interests include marine system simulations, computational fluid dynamics, and the application of physics in maritime defense

References

Arif, W., Jalil, M., Piran, P., Song, H.-K., & Lee, B.-M. (2023). A survey on unmanned underwater vehicles: Challenges, enabling technologies, and future research directions. Sensors, 23(17), 7321, 1-29. https://doi.org/10.3390/s23177321

Zereik, E., Bibuli, M., Mišković, N., Ridao, P., & Pascoal, A. (2018). Challenges and future trends in marine robotics. Annual Reviews in Control, 46, 350-368. https://doi.org/10.1016/j.arcontrol.2018.10.002

de la Vega, J., Riba, J.-R., & Ortega-Redondo, J. A. (2024). Real-time lithium battery aging prediction based on capacity estimation and deep learning methods. Batteries, 10(1), 10, 1-16. https://doi.org/10.3390/batteries10010010

Rupp, C., & Reveles, N. (2020, March). The Rotorcraft Aerodynamics Library: A Modelica library for simulation of rotorcraft aerodynamics and whirl flutter. In Proceedings of the American Modelica Conference, Boulder, Colorado, USA, 111-119. https://doi.org/10.3384/ecp20169111

Wei, D., Hao, P., & Ma, H. (2021). Architecture design and implementation of UUV mission planning. In Proceedings of the 2021 Chinese Control Conference (CCC), Shanghai, China, 1869–1873. https://doi.org/10.23919/CCC52363.2021.9549770

Lee, H.-I., Lee, S., Shin, H.-S., Tsourdos, A., & Fletcher, S. R. (2023). Human factor analysis in robotic and autonomous systems for military applications. Human Aspects of Advanced Manufacturing, 80, 178-188. https://doi.org/10.54941/ahfe1003520

Carlton, J. S. (2018). Marine propellers and propulsion (4th ed.). Butterworth-Heinemann. https://doi.org/10.1016/C2014-0-01177-X

Sweeting, W. J., Hutchinson, A. R., & Savage, S. D. (2011). Factors affecting electric vehicle energy consumption. International Journal of Sustainable Engineering, 4(3), 192-201. https://doi.org/10.1080/19397038.2011.592956

Fritzson, P., Pop, A., Abdelhak, K., Asghar, A., Bachmann, B., Braun, W., Bouskela, D., Braun, R., Buffoni, L., Casella, F., Castro, R., Franke, R., Fritzson, D., Gebremedhin, M., Heuermann, A., Lie, B., Mengist, A., Mikelsons, L., Moudgalya, K., Ochel, L., Palanisamy, A., Ruge, V., Schamai, W., Sjolund, M., Thiele, B., Tinnerholm, J., & Östlund, P. (2020). The OpenModelica integrated environment for modeling, simulation, and model-based development. Modeling, Identification and Control, 41(4), 241-285. https://doi.org/10.4173/mic.2020.4.3

Elmqvist, H., Mattsson, S. E., & Otter, M. (1999). Modelica—a language for physical system modeling, visualization, and interaction. In Proceedings of the IEEE International Symposium on Computer-Aided Control System Design, Kohala Coast, HI, USA, 630-639. https://doi.org/10.1109/CACSD.1999.808720

Vertical Flight Society. (2020, October). UAV dynamics and electric power system modeling and visualization using Modelica and FMI. In Proceedings of the Vertical Flight Society’s 76th Annual Forum & Technology Display, 1-15. https://doi.org/10.4050/F-0076-2020-16289

Wang, C., Chai, Y., & Cui, L. (2022). Research on Energy Supply System Applied to Autonomous Underwater Observation Vehicles. Applied Bionics and Biomechanics, 2022(1), 1-16. https://doi.org/10.1155/2022/3859307

Healey, A. J., & Lienard, D. (1993). Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE journal of Oceanic Engineering, 18(3), 327-339. https://doi.org/10.1109/JOE.1993.236372

Kim, B. J., Yoon, J. Y., Yu, G. C., Ryu, H. S., Ha, Y. C., & Paik, J. K. (2011). Heat flow analysis of an FPSO topside model with wind effect taken into account: A wind-tunnel test and CFD simulation. Ocean Engineering, 38(10), 1130-1140. https://doi.org/10.1016/j.oceaneng.2011.05.004

Feezor, M. D., Sorrell, F. Y., & Blankinship, P. R. (2001). An interface system for autonomous undersea vehicles. IEEE Journal of Oceanic Engineering, 26(4), 522-525. https://doi.org/10.1109/48.972087

Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons. https://doi.org/10.1002/9781119994138

Yang, N., Amini, M. R., Johnson-Roberson, M., & Sun, J. (2018, December). Real-time model predictive control for energy management in autonomous underwater vehicle. In 2018 IEEE Conference on Decision and Control (CDC), 4321-4326. https://doi.org/10.1109/CDC.2018.8619844

Bae, I., & Hong, J. (2023). Survey on the developments of unmanned marine vehicles: Intelligence and cooperation. Sensors, 23(10), 4643. https://doi.org/10.3390/s23104643

Aslam, H., Mudassir, M., Zaider, S. S. H., & Khan, R. (2022, August). Design and Simulation of Electrical Propulsion System of Unmanned Underwater Vehicle Using MATLAB GUI. In 2022 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 918-922. https://doi.org/10.1109/IBCAST54850.2022.9990188

Yang, N., Chang, D., Amini, M. R., Johnson-Robersor, M., & Sun, J. (2019, July). Energy management for autonomous underwater vehicles using economic model predictive control. In 2019 American Control Conference (ACC), 2639-2644. https://doi.org/10.23919/ACC.2019.8815106

Guo, X., Lang, X., Yuan, Y., Tong, L., Shen, B., Long, T., & Mao, W. (2024). Energy management system for hybrid ship: Status and perspectives. Ocean Engineering, 310(1), 118638. https://doi.org/10.1016/j.oceaneng.2024.118638

Zhang, Z., Mi, W., Du, J., Wang, Z., Wei, W., Zhang, Y., ... & Ren, Y. (2022). Design and implementation of a modular UUV simulation platform. Sensors, 22(20), 8043. https://doi.org/10.3390/s22208043

Zhao, X., Wang, L., Zhou, Y., Pan, B., Wang, R., Wang, L., & Yan, X. (2022). Energy management strategies for fuel cell hybrid electric vehicles: Classification, comparison, and outlook. Energy Conversion and Management, 270, 116179. https://doi.org/10.1016/j.enconman.2022.116179

Dastjerdi, R. S., Abbasian, M. A., Saghafi, H., & Vafaie, M. H. (2018). Performance improvement of permanent-magnet synchronous motor using a new deadbeat-direct current controller. IEEE Transactions on Power Electronics, 34(4), 3530-3543. https://doi.org/10.1109/TPEL.2018.2836866

Swaminathan, S., & Saripalli, S. (2018, November). A framework for modeling underwater vehicles in modelica. In 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), 1-6. https://doi.org/10.1109/AUV.2018.8729710

Downloads

Published

2025-04-25

How to Cite

Aldhiantoro, G. I., Pinardi, K., Kusumadjati, A., Putri Abdul, A. M., Dewi, D. R., Baarik, M. H. A., & Palupi, E. K. (2025). Power and performance analysis of UUV motor systems with torpedo capabilities using to support the indonesian navy’s maritime operations. International Journal of Applied Mathematics, Sciences, and Technology for National Defense, 3(1), 45-54. https://doi.org/10.58524/app.sci.def.v3i1.651