Prototype smart integrated fire detection based on deep learning YOLO v8 and IoT (internet of things) to improve early fire detection
Abstract
The high incidence of fires in Indonesia in 2018-2023 is 5,336 fire incidents have caused many deaths and enormous material losses. This system is designed to identify early signs of fire through object detection and sensor technology, which is integrated with the Blynk IoT platform for real-time sensor monitoring and Telegram for instant notifications to users. The waterfall prototype method was designed through observation, system design, program code creation, tool testing, and tool implementation. This research uses Deep Learning YOLOv8 technology and IoT using ESP 32 as a microcontroller. Based on the training datasets, it produces precision=0.95872; recall=0.91; mAP50=0.97; mAP50-95 =0.66. The system uses the integration of a multisensor KY-026 flame sensor, DHT 22 temperature and humidity sensor, and MQ-2 sensors can detect CO, LPG, and smoke gas. All these multisensors can be monitored on Blynk IoT and Telegrambot in real time.
Keywords
Full Text:
PDFReferences
Altowaijri, A. H., Alfaifi, M. S., Alshawi, T. A., Ibrahim, A. B., & Alshebeili, S. A. (2021). A privacy-preserving IoT-based fire detector. IEEE Access, 9, 51393-51402.
https://doi.org/10.1109/ACCESS.2021.3069588
Bhoi, S. K., Panda, S. K., Padhi, B. N., Swain, M. K., Hembram, B., Mishra, D., ... & Khilar, P. M. (2018, December). FireDS-IoT: A fire detection system for smart homes based on IoT data analytics. In 2018 International Conference on Information Technology (ICIT) (pp. 161-165).
https://doi.org/10.1109/ICIT.2018.00042
Coe, N. M., Hess, M., Yeungt, H. W. C., Dicken, P., & Henderson, J. (2017). Globalizing regional development: a global production networks perspective. In Economy (pp. 199-215). Routledge. https://doi.org/10.4324/9781351159203-9
Chowdhury, N., Mushfiq, D. R., & Chowdhury, A. E. (2019, May). Computer vision and smoke sensor-based fire detection system. In 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT) (pp. 1-5).
https://doi.org/10.1109/ICASERT.2019.8934458
Gaur, A., Singh, A., Kumar, A., Kumar, A., & Kapoor, K. (2020). Video flame and smoke based fire detection algorithms: A literature review. Fire Technology, 56, 1943-1980.
https://doi.org/10.1007/s10694-020-00986-y
Ghali, R., & Akhloufi, M. A. (2023). Deep learning approaches for wildland fires remote sensing: Classification, detection, and segmentation. Remote Sensing, 15(7), 1821.
https://doi.org/10.3390/rs15071821
Kanungo, S. (2024). AI-driven resource management strategies for cloud computing systems, services, and applications. World Journal of Advanced Engineering Technology and Sciences, 11(2),559-566.https://doi.org/10.30574/wjaets.2024.11.2.0137
Kelvin, P. E. Y., & Rahayu, S. (2015). Pemetaan lokasi kebakaran berdasarkan prinsip segitiga api pada industri textile. SeminarNasional "Inovasi Dalam Desain Dan Teknologi"-IDeaTech2015, 36-43.
Harahap, M. A. K., Wurarah, R. N., Fathurohman, A., Suroso, A., & Iskandar, Y. (2023). Globalization substance and industrial revolution 4.0 and the role of technological innovation for economic development towards entrepreneurship. Jurnal Bisnisman: Riset Bisnis dan Manajemen, 4(3), 37-51. https://doi.org/10.52005/bisnisman.v4i3.122
Liu, Z. (2023). Deep Learning-based method for Fire Detection (Master's thesis). Aalto University School of Science.
Media Indonesia. (2023, June 22). Peristiwa kebakaran di Jakarta meningkat di 2023, terbanyak di Jaktim. Media Indonesia. Retrieved from https://mediaindonesia.com/megapolitan/646148/peristiwa-kebakaran-di-jakarta-meningkat-di-2023-terbanyak-di-jaktim.
Mohammed, A., Kadhom, M., Oladoye, P. O., & Yousif, E. (2023). Fire Chemistry and Forensic Analysis of Fire Debris. Journal of University of Anbar for Pure Science, 17(2), 86-90.
https://doi.org/10.37652/juaps.2023.140544.1072
Muhammad, K., Ahmad, J., & Baik, S. W. (2018). Early fire detection using convolutional neural networks during surveillance for effective disaster management. Neurocomputing, 288, 30-42. https://doi.org/10.1016/j.neucom.2017.04.083
Mukhopadhyay, S. C., Tyagi, S. K. S., Suryadevara, N. K., Piuri, V., Scotti, F., & Zeadally, S. (2021). Artificial intelligence-based sensors for next-generation IoT applications: A review. IEEE Sensors Journal, 21(22), 24920-24932. https://doi.org/10.1109/JSEN.2021.3055618
Rodriguez-Garcia, P., Li, Y., Lopez-Lopez, D., & Juan, A. A. (2023). Strategic decision making in smart home ecosystems: A review on the use of artificial intelligence and Internet of things. Internet of Things, 22(100772), 1-12. https://doi.org/10.1016/j.iot.2023.100772
Saeed, F., Paul, A., Rehman, A., Hong, W. H., & Seo, H. (2018). IoT-based intelligent modeling of smart home environment for fire prevention and safety. Journal of Sensor and Actuator Networks, 7(1), 11.https://doi.org/10.3390/jsan7010011
Siraj, M. T., Debnath, B., Payel, S. B., Bari, A. M., & Islam, A. R. M. T. (2023). Analysis of the fire risks and mitigation approaches in the apparel manufacturing industry: Implications toward operational safety and sustainability. Heliyon, 9(9), 1-21.
https://doi.org/10.1016/j.heliyon.2023.e20312
Talaat, F. M., & ZainEldin, H. (2023). An improved fire detection approach based on YOLO-v8 for smart cities. Neural Computing and Applications, 35(28), 20939-20954.
https://doi.org/10.1007/s00521-023-08809-1
Van Coile, R., Lucherini, A., Chaudhary, R. K., Ni, S., Unobe, D., & Gernay, T. (2023). Economic impact of fire: cost and impact of fire protection in buildings.
Yunusov, N., Islam, B. M. S., Abdusalomov, A., & Kim, W. (2024). Robust forest fire detection method for surveillance systems based on you only look once version 8 and transfer learning approaches. Processes, 12(5), 1039. https://doi.org/10.3390/pr12051039
DOI: https://doi.org/10.58524/app.sci.def.v2i2.437
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Â