Approximation of BPS Skyrme model using modified Lagrangian Skyrmion

Aditya Tri Oktaviana , Abdul Rahman Alfarasyi , Truong Gia Huy , Khazali Fahmi

Abstract


One of the nuclear atomic models represented by Skyrmion was the Skyrme model. This model was a modified nonlinear sigma model with a Skyrme field where the classical solution use generalized sixth order terms and potential terms. The binding energy that will be studied in the Skyrme SU(2) model is to generalize the second order nonlinear sigma model terms with sixth order derivative terms. The Lagrangian will be obtained for these two terms to find the BPS (Bogomolny Prasad Sommerfield) solution for the profile function numerically. The result of numerical calculation will be used to calculate static energy and rotational energy, where the characteristic of the nucleus can be observed from these two energies. Furthermore, the value of the coupling constant in the Lagrangian Skyrmion will be calculated from the static energy and rotational energy obtained previously. These values are expected to help in the application of Skyrme model for many research physics field.


Keywords


BPS solution; Coupling constant; Rotational energy; Static energy; Skyrmion

Full Text:

PDF

References


Adam, C., Sanchez-Guillen, J. & Wereszczynski, A. (2011). A BPS Skyrme model and phenomenology of nuclei. AIP Conference Proceedings. 1343 (2011), 598–600. https://doi.org/10.1063/1.3575106

Adam, C., Naya, C., Sanchez-Guillen, J. & Wereszczynski, A. (2013). Nuclear binding energies from a Bogomol'nyi-Prasad-Sommerfield Skyrme model. Physical Review C. 88(5), 054313. https://doi.org/10.1103/PhysRevC.88.054313

Atmaja, A. N. & Ramadhan, H. S. (2014). On Bogomol’nyi equations of classical solutions. Physical Review D. 90(10), 105009. https://doi.org/10.1103/PhysRevD.90.105009

Beaudoin, M. O. & Marleau, L. (2014). Near-BPS Skyrmions: constant baryon density. Nuclear. Physics B. 883(2014), 328-349. https://doi.org/10.1016/j.nuclphysb.2014.03.025

Blanco-Pillado, J. J., Ramadhan, H. S., & Shiiki, N. (2009). Skyrme Branes. Physical Review D. 79(8), 085004. https://doi.org/10.1103/PhysRevD.79.085004

Bonenfant, E. & Marleau, L. (2010). Nuclei as near BPS-Skyrmions. Physical Review D. 82(5), 054023. https://doi.org/10.1103/PhysRevD.82.054023

Bonenfant, E., Harbour, L. & Marleau, L. (2012). Near-BPS Skyrmions: Nonshell configurations and Coulomb effects. Physical Review D. 85(11), 114045. https://doi.org/10.1103/PhysRevD.85.114045

Burt, B. (2002). Storage technologies and issues for military suppliers. 19th Digital Avionics Systems Conference. Proceedings. 1(2002), 6858852. https://doi.org/10.1109/DASC.2000.886945

Finocchio, G., Buttner, F., Tomasello, R., Carpentieri, M., & Klaui, M. (2016). Magnetic Skyrmions: from fundamental to applications. Journal of Physics D: Applied Physics. 49(42), 423001. https://doi.org/10.48550/arXiv.2308.11811

Fortier, J. & Marleau, L. (2013). The quantization of the B=1 and B=2 Skyrmions. Physical Review D. 77(5). 054017. https://doi.org/10.1103/PhysRevD.77.054017

Gudnason, S. B. (2023). Nonlinear rigid-body quantization of Skyrmions. In arXiv: hep-th. https://doi.org/10.48550/arXiv.2311.11667

Hadi, M. & Wospakrik, H.J. (2004). SU(2) Skyrme model for hadron. In arXiv: hep-ph. https://doi.org/10.48550/arXiv.1007.0888

Hadi, M., Nurdin, I., & Hermawanto, D. (2004). Analytical analysis and numerical solution of two flavours Skyrmion. In arXiv: hep-ph. https://doi.org/10.48550/arXiv.1006.5601

Houghton, C. & Magee, S. (2006). A Zero-mode quantization of the Skyrmion. Physics Letters B. 632(4), 593-596. https://doi.org/10.1103/PhysRevD.61.114024

Kopeliovich, V. B., Piette, B. & Zakrzewski, W. J. (2006). Mass terms in the Skyrme model Physical Review D. 73(1), 014006. https://doi.org/10.1103/PhysRevD.73.014006

Li, S., Wang, X., & Rasing, T. (2023). Magnetic Skyrmions: Basic properties and potential applications. Interdisciplinary Materials. 2(2), 260-289. https://doi.org/10.1002/idm2.12072

Luo, S. & You, L. (2021). Skyrmion devices for memory and logic applications. APL Materials. 9, 064035. https://doi.org/10.1063/5.0042917

Marleau, L. & Rivard, J. F. (2000). A generating function for all-orders skyrmions. model Physical Review D. 63(3), 036007. https://doi.org/10.1103/PhysRevD.63.036007

Marleau, L. (2004). Solving Skyrmions. In arXiv: hep-ph. https://doi.org/10.48550/arXiv.hep-ph/0403292

Naya, C. & Sutcliffe, P. (2018). Skyrmions and clustering in light nuclei. Physical Review Letters. 121(23), 232002. https://doi.org/10.1103/PhysRevLett.121.232002

Wong, S.M.H. (2002). What exactly is a Skyrmion?. In arxiv: hep-ph. https://doi.org/10.48550/arXiv.hep-ph/0202250




DOI: https://doi.org/10.58524/app.sci.def.v1i3.302

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.