Approximation of BPS Skyrme model using modified Lagrangian Skyrmion
DOI:
https://doi.org/10.58524/app.sci.def.v1i3.302Keywords:
BPS solution, Coupling constant, Rotational energy, Static energy, SkyrmionAbstract
One of the nuclear atomic models represented by Skyrmion was the Skyrme model. This model was a modified nonlinear sigma model with a Skyrme field where the classical solution use generalized sixth order terms and potential terms. The binding energy that will be studied in the Skyrme SU(2) model is to generalize the second order nonlinear sigma model terms with sixth order derivative terms. The Lagrangian will be obtained for these two terms to find the BPS (Bogomolny Prasad Sommerfield) solution for the profile function numerically. The result of numerical calculation will be used to calculate static energy and rotational energy, where the characteristic of the nucleus can be observed from these two energies. Furthermore, the value of the coupling constant in the Lagrangian Skyrmion will be calculated from the static energy and rotational energy obtained previously. These values are expected to help in the application of Skyrme model for many research physics field.
References
Adam, C., Sanchez-Guillen, J. & Wereszczynski, A. (2011). A BPS Skyrme model and phenomenology of nuclei. AIP Conference Proceedings. 1343 (2011), 598–600. https://doi.org/10.1063/1.3575106
Adam, C., Naya, C., Sanchez-Guillen, J. & Wereszczynski, A. (2013). Nuclear binding energies from a Bogomol'nyi-Prasad-Sommerfield Skyrme model. Physical Review C. 88(5), 054313. https://doi.org/10.1103/PhysRevC.88.054313
Atmaja, A. N. & Ramadhan, H. S. (2014). On Bogomol’nyi equations of classical solutions. Physical Review D. 90(10), 105009. https://doi.org/10.1103/PhysRevD.90.105009
Beaudoin, M. O. & Marleau, L. (2014). Near-BPS Skyrmions: constant baryon density. Nuclear. Physics B. 883(2014), 328-349. https://doi.org/10.1016/j.nuclphysb.2014.03.025
Blanco-Pillado, J. J., Ramadhan, H. S., & Shiiki, N. (2009). Skyrme Branes. Physical Review D. 79(8), 085004. https://doi.org/10.1103/PhysRevD.79.085004
Bonenfant, E. & Marleau, L. (2010). Nuclei as near BPS-Skyrmions. Physical Review D. 82(5), 054023. https://doi.org/10.1103/PhysRevD.82.054023
Bonenfant, E., Harbour, L. & Marleau, L. (2012). Near-BPS Skyrmions: Nonshell configurations and Coulomb effects. Physical Review D. 85(11), 114045. https://doi.org/10.1103/PhysRevD.85.114045
Burt, B. (2002). Storage technologies and issues for military suppliers. 19th Digital Avionics Systems Conference. Proceedings. 1(2002), 6858852. https://doi.org/10.1109/DASC.2000.886945
Finocchio, G., Buttner, F., Tomasello, R., Carpentieri, M., & Klaui, M. (2016). Magnetic Skyrmions: from fundamental to applications. Journal of Physics D: Applied Physics. 49(42), 423001. https://doi.org/10.48550/arXiv.2308.11811
Fortier, J. & Marleau, L. (2013). The quantization of the B=1 and B=2 Skyrmions. Physical Review D. 77(5). 054017. https://doi.org/10.1103/PhysRevD.77.054017
Gudnason, S. B. (2023). Nonlinear rigid-body quantization of Skyrmions. In arXiv: hep-th. https://doi.org/10.48550/arXiv.2311.11667
Hadi, M. & Wospakrik, H.J. (2004). SU(2) Skyrme model for hadron. In arXiv: hep-ph. https://doi.org/10.48550/arXiv.1007.0888
Hadi, M., Nurdin, I., & Hermawanto, D. (2004). Analytical analysis and numerical solution of two flavours Skyrmion. In arXiv: hep-ph. https://doi.org/10.48550/arXiv.1006.5601
Houghton, C. & Magee, S. (2006). A Zero-mode quantization of the Skyrmion. Physics Letters B. 632(4), 593-596. https://doi.org/10.1103/PhysRevD.61.114024
Kopeliovich, V. B., Piette, B. & Zakrzewski, W. J. (2006). Mass terms in the Skyrme model Physical Review D. 73(1), 014006. https://doi.org/10.1103/PhysRevD.73.014006
Li, S., Wang, X., & Rasing, T. (2023). Magnetic Skyrmions: Basic properties and potential applications. Interdisciplinary Materials. 2(2), 260-289. https://doi.org/10.1002/idm2.12072
Luo, S. & You, L. (2021). Skyrmion devices for memory and logic applications. APL Materials. 9, 064035. https://doi.org/10.1063/5.0042917
Marleau, L. & Rivard, J. F. (2000). A generating function for all-orders skyrmions. model Physical Review D. 63(3), 036007. https://doi.org/10.1103/PhysRevD.63.036007
Marleau, L. (2004). Solving Skyrmions. In arXiv: hep-ph. https://doi.org/10.48550/arXiv.hep-ph/0403292
Naya, C. & Sutcliffe, P. (2018). Skyrmions and clustering in light nuclei. Physical Review Letters. 121(23), 232002. https://doi.org/10.1103/PhysRevLett.121.232002
Wong, S.M.H. (2002). What exactly is a Skyrmion?. In arxiv: hep-ph. https://doi.org/10.48550/arXiv.hep-ph/0202250
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Aditya Tri Oktaviana, Abdul Rahman Alfarasyi, Truong Gia Huy, Khazali Fahmi

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.