Approximation of BPS Skyrme model using modified Lagrangian Skyrmion

Aditya Tri Oktaviana , Abdul Rahman Alfarasyi , Truong Gia Huy , Khazali Fahmi


One of the nuclear atomic models represented by Skyrmion was the Skyrme model. This model was a modified nonlinear sigma model with a Skyrme field where the classical solution use generalized sixth order terms and potential terms. The binding energy that will be studied in the Skyrme SU(2) model is to generalize the second order nonlinear sigma model terms with sixth order derivative terms. The Lagrangian will be obtained for these two terms to find the BPS (Bogomolny Prasad Sommerfield) solution for the profile function numerically. The result of numerical calculation will be used to calculate static energy and rotational energy, where the characteristic of the nucleus can be observed from these two energies. Furthermore, the value of the coupling constant in the Lagrangian Skyrmion will be calculated from the static energy and rotational energy obtained previously. These values are expected to help in the application of Skyrme model for many research physics field.


BPS solution; Coupling constant; Rotational energy; Static energy; Skyrmion

Full Text:



Adam, C., Sanchez-Guillen, J. & Wereszczynski, A. (2011). A BPS Skyrme model and phenomenology of nuclei. AIP Conference Proceedings. 1343 (2011), 598–600.

Adam, C., Naya, C., Sanchez-Guillen, J. & Wereszczynski, A. (2013). Nuclear binding energies from a Bogomol'nyi-Prasad-Sommerfield Skyrme model. Physical Review C. 88(5), 054313.

Atmaja, A. N. & Ramadhan, H. S. (2014). On Bogomol’nyi equations of classical solutions. Physical Review D. 90(10), 105009.

Beaudoin, M. O. & Marleau, L. (2014). Near-BPS Skyrmions: constant baryon density. Nuclear. Physics B. 883(2014), 328-349.

Blanco-Pillado, J. J., Ramadhan, H. S., & Shiiki, N. (2009). Skyrme Branes. Physical Review D. 79(8), 085004.

Bonenfant, E. & Marleau, L. (2010). Nuclei as near BPS-Skyrmions. Physical Review D. 82(5), 054023.

Bonenfant, E., Harbour, L. & Marleau, L. (2012). Near-BPS Skyrmions: Nonshell configurations and Coulomb effects. Physical Review D. 85(11), 114045.

Burt, B. (2002). Storage technologies and issues for military suppliers. 19th Digital Avionics Systems Conference. Proceedings. 1(2002), 6858852.

Finocchio, G., Buttner, F., Tomasello, R., Carpentieri, M., & Klaui, M. (2016). Magnetic Skyrmions: from fundamental to applications. Journal of Physics D: Applied Physics. 49(42), 423001.

Fortier, J. & Marleau, L. (2013). The quantization of the B=1 and B=2 Skyrmions. Physical Review D. 77(5). 054017.

Gudnason, S. B. (2023). Nonlinear rigid-body quantization of Skyrmions. In arXiv: hep-th.

Hadi, M. & Wospakrik, H.J. (2004). SU(2) Skyrme model for hadron. In arXiv: hep-ph.

Hadi, M., Nurdin, I., & Hermawanto, D. (2004). Analytical analysis and numerical solution of two flavours Skyrmion. In arXiv: hep-ph.

Houghton, C. & Magee, S. (2006). A Zero-mode quantization of the Skyrmion. Physics Letters B. 632(4), 593-596.

Kopeliovich, V. B., Piette, B. & Zakrzewski, W. J. (2006). Mass terms in the Skyrme model Physical Review D. 73(1), 014006.

Li, S., Wang, X., & Rasing, T. (2023). Magnetic Skyrmions: Basic properties and potential applications. Interdisciplinary Materials. 2(2), 260-289.

Luo, S. & You, L. (2021). Skyrmion devices for memory and logic applications. APL Materials. 9, 064035.

Marleau, L. & Rivard, J. F. (2000). A generating function for all-orders skyrmions. model Physical Review D. 63(3), 036007.

Marleau, L. (2004). Solving Skyrmions. In arXiv: hep-ph.

Naya, C. & Sutcliffe, P. (2018). Skyrmions and clustering in light nuclei. Physical Review Letters. 121(23), 232002.

Wong, S.M.H. (2002). What exactly is a Skyrmion?. In arxiv: hep-ph.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.