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Mathematics education students continue to struggle with the complex notion 
of spatial geometry. Therefore, learning approaches should incorporate strong 
conceptual understanding. This study examined the effectiveness of flipped 
classroom-based geometry learning combined with metacognitive scaffolding in 
developing students’ spatial ability. It also identified students’ spatial 
knowledge needs, types of metacognitive questions posed by the teacher, and 
forms of scaffolding used. A mixed-methods design was employed, consisting of 
an exploratory qualitative phase followed by a quasi-experimental phase. The 
qualitative phase explored key spatial knowledge demands and scaffolding 
patterns through questionnaires and interviews, while the quasi-experimental 
phase compared three instructional conditions: flipped classroom with 
metacognitive scaffolding, flipped classroom without scaffolding, and 
conventional instruction. Results indicated that students needed four types of 
spatial geometry knowledge: 3D coordinate representation, geometric 
transformation, spatial visualization, and angle–distance relationships. 
Teachers’ metacognitive questions mainly emphasized awareness of 
understanding, while conceptual scaffolding was more dominant than 
metacognitive scaffolding. Quantitatively, students in the flipped classroom with 
metacognitive scaffolding showed greater improvements in spatial ability. 
These findings suggest integrating self-directed learning and metacognitive 
support in geometry learning that requires advanced visualization and 
independent thinking. 
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INTRODUCTION 

Mathematics education students face an actual challenge in mastering the aspects of spatial 
geometry, most obviously when it concerns 3D coordinates, visualization of shapes, mapping 
spatial transformations, and the interrelations of angles, distances, and other spatial elements 
(Borji & Martínez-Planell, 2023; David et al., 2018; Rellensmann et al., 2017). The reason for these 
difficulties is an insufficient spatial representation skill, i.e., an ability to mentally represent 
pictures of three-dimensional forms and correlate numerical information with visual meanings 
(Cory & Garofalo, 2011; Haciomeroglu et al., 2010; Krawec, 2014). Yet it is a tendency they rely 
rather on algebraic techniques and do not sufficiently grasp the spatial importance of the developed 
geometric construction itself (Haciomeroglu & LaVenia, 2017; Pitta-Pantazi et al., 2020). Such a 
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tendency is further worsened by poor opportunities for exploration of spatial objects using 
manipulatives and vision technology (Haciomeroglu, 2015).  

These visualization gaps, in turn, impact students’ ability to solve spatial geometry problems, 
especially contextual geometry problems, which demand the integration of symbolic, graphic, and 
spatial representations (Minh & Lagrange, 2016; Walkington et al., 2024). Existing literature has 
identified the importance of spatial visualization skills, which are paramount in dealing with 
complex geometry problems, particularly in situations where students are asked to relate abstract 
mathematical concepts and concrete visualization in space (Bragelman et al., 2024; Gasteiger et al., 
2020; Saleh et al., 2018). In other situations, the inability to create meaningful mental images of the 
given geometry prevents students from reverting to procedural or arithmetic strategies, which 
results in mechanical thinking and the inability to grasp key concepts (Chang et al., 2016; Cuevas-
Vallejo et al., 2023; Rach & Ufer, 2020; Robinson & LeFevre, 2012; Scheibling-Sève et al., 2020). 
Thus, geometry should be taught in a manner that promotes good visualization and spatial 
visualization. 

Another recent teaching strategy that is gaining popularity and seems to be effective, 
especially when time and interaction are critical, mainly in relation to geometry classes, is the 
"flipped classroom" strategy. As described, it’s quite simple: students will be asked to complete the 
main aspects of a lesson before the actual classroom-based interactions. As might be expected, 
some research suggests that “flipped” teaching is not automatically effective for developing "deep" 
spatial knowledge and skills, mainly when it promotes the simple delivery of knowledge without 
metacognitive reflection (Cevikbas & Kaiser, 2020; Cronhjort et al., 2018; Fredriksen, 2021; 
Helgevold & Moen, 2015). In spatial geometry, where visualization is critical, "flipped" approaches 
need to be incorporated with effective classroom approaches that allow students to develop 
awareness of their own cognitive processes (Voigt et al., 2020).  

Metacognitive scaffolding is another promising research avenue for addressing the above-
mentioned information gap. In fact, it has been suggested that it is helpful to teach students, in a 
quite deliberate manner, to monitor, evaluate, and reflect on their own cognitive processes while 
dealing with problems (Cevikbas & Kaiser, 2020; Kosko, 2020), at least in geometry classes. Here, 
more specific questions such as “Why have you adopted this strategy?” or “Are there any other 
ways of tackling your problem?” can prompt students to reflect more attentively, make adjustments 
in their comprehension, and eventually link what they learn with possible real-world applications. 
Observing classrooms, however, it is clear that several instructors still make use of “Do you 
understand?” type questions, which mostly revolve around whether students feel they can grasp 
something or not (Hein & Prediger, 2024; Schoonen et al., 2011).  

Such teachers rely more on conceptual and procedural scaffolding but pay less attention to 
metacognitive scaffolding, enabling students to become independent thinkers. Procedural and 
conceptual scaffolding facilitate student problem-solving and comprehending geometric concepts 
and rules; they do not promote self-assessing students and their learning (Nagle et al., 2019). The 
metacognitive scaffolding technique, as mentioned above, helps increase students' critical thinking 
and options in choosing strategies in solving geometry problems (Finesilver, 2022; Rellensmann et 
al., 2017; Soneira et al., 2018).  

These findings highlight the importance of mixing the flipped classroom model with 
metacognitive scaffolding to enhance students' spatial thinking in geometry. The flipped classroom 
model allows students to explore the content before class, whereas metacognitive scaffolding 
enables reflection, monitoring, and evaluation to guide students with their strategies in solving 
problems during class,(Kosko, 2020; Leron & Paz, 2014; Speer & Wagner, 2009). This can lead to 
even better meaning-making in terms of spatial thinking and better performance in complex spatial 
geometry problems. 

Despite the increasing interest in flipped classroom approaches and scaffolding strategies in 
math education, a number of research gaps remain. Firstly, few controlled or quasi-experimental 
studies have explored how flipping the classroom, coupled with metacognitive scaffolding, impacts 
learning in spatial geometry, especially at higher education. Secondly, only a handful of studies have 
provided a detailed analysis of the types of metacognitive questions and scaffolding practices that 
teachers actually employ in the course of geometry lessons. Thirdly, there has been limited 
empirical work conducted to systematically identify students' needs concerning their spatial 
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knowledge to inform instructional design. These methodological gaps collectively point to the need 
for integrative research that links learning outcomes with instructional processes. 

What is novel about this study is its deliberate combination of flipped classroom techniques 
and metacognitive scaffolding within the context of college-level spatial geometry education. 
Contrasted with the prior work that tends to study flipped classrooms or scaffolding in isolation, or 
that centers on engagement and achievement, this research brings the learning gains in 
instructional mechanisms of spatial geometry to the fore. It does so by examining, in concert, 
students' spatial knowledge demands, the metacognitive scaffolding practices instructors actually 
implement, and the consequent learning gains across different conditions. 

In consideration of this, therefore, this research must aim to explore the extent to which a 
flipped classroom, particularly with enhanced metacognitive scaffolding, can promote spatial skills 
among university students, as well as identify what students need to know in spatial concepts, and 
what instructors aim at as far as metacognitive scaffolding is concerned within geometry classes. 
The research design of this study, which is a mixed design with qualitative as well as a quasi-
experiment, provides a comprehensive understanding of learning processes as well as learning 
outcomes. 

Further developing our understanding of geometry education that incorporates flipped 

learning and metacognition, two basic aspects will be highlighted; (1) What are the students’ 
needs for understanding geometric concepts? What are the nature and form of 
metacognitive prompts and scaffolding that teachers need to design for developing 
students’ geometric spatial skills?; (2) How effective is the combination of Flipped 
Classroom and metacognitive scaffolding for the teaching of geometry? 

 
METHOD 

This investigation aimed to monitor the development of students' spatial geometry abilities 
under varying conditions, while also exploring the needs of students and how teachers facilitate 
them through a qualitative investigation. Furthermore, as it is always advisable to remain in sync 
with the investigation queries, design, and analysis process, a mixed-inquiry method, in this case, 
proved to be useful. Most importantly, on one hand, qualitative inquiry aided in making explicit 
discernments regarding spatial geometry abilities that students lacked, as well as queries in 
metacognition and scaffolding guided by teachers. On the other hand, a quasi-experimental design 
with pre-tests and post-tests involving control groups evaluated the development of students' 
spatial geometry abilities under respective conditions to determine whether a flipped classroom 
with metacognitive scaffolding aided in improvements in geometry abilities among students. We 
implemented three different interventions in three classes; class A studied geometry using the 
flipped classroom and the metacognitive scaffolding approach, class B utilized a conventional 
learning method, and class C utilized the flipped classroom without metacognitive scaffolding. The 
research design is shown in Table 1. 
 

Table 1. Research Design 

Group Pre-test Intervention Post-Test 
Class A O1 The flipped classroom with metacognitive scaffolding O2 
Class B O1 Conventional method O2 
Class C O1 The flipped classroom without metacognitive scaffolding O2 

 
Participant 

This study involved three groups of students with diverse backgrounds (n = 92) (age 18 – 20 
years) (participants’ demography is shown in Table 2). We invited three geometry lecturers to 
teach each class. Before performing the experiment, we made sure that the lecturers were briefed 
about the different approaches they were going to implement in their classrooms. We tried to 
convince the lecturers to adjust the teaching approach to the needs of their students. We scheduled 
the lessons for two hours per week and provided the students with the appropriate learning 
materials. One intriguing component of the learning design developed in this study was that the 
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students could choose among three simultaneous modes of learning process, namely: (1) 
traditional face-to-face sessions; (2) asynchronous online learning featuring videos with content, 
pedagogy, and demonstrations via Geogebra; and (3) a combined version of the former modes 
(hybrid). All students involved in this research were required to complete the same assignments 
and provide comments on the learning process during the same time interval. 
 

Table 2. Participants’ Demography 

Aspect Number Percentage 
Gender   
Men 35 38% 
Women 57 62% 
Group   
Class A 29 31% 
Class B 33 36% 
Class C 30 33% 
Participants’ place of origin   
Urban area 21 23% 
Suburban area 54 58% 
Rural area 27 29% 
GPA   
GPA≥ 3.75 18 19% 
3.5 ≤ GPA< 3.75 34 37% 
GPA < 3.5 40 44% 

 
Lecturers who participated in collaborative professional learning with the researchers (the 

authors of this paper) focused on helping the students develop spatial ability in geometry learning. 
They were given handouts and materials containing a series of tasks, including assessments in the 
form of pre-tests and post-tests. During the initial planning, the lecturers assigned geometry tasks 
related to angles between spaces and distances between spatial elements to the students. The tasks 
were developed by the researchers by prioritizing theoretical perspectives and empirical findings 
that have been previously described in existing literature. The tasks given for each session are 
presented in Tables 3 and 4. 
 

Table 3. Spatial Task Design 

Task Spatial Topic Problem Description 

Task 
1 

Angles Between 
Spatial Elements 

A cuboid (ABCD.EFGH) has the following dimensions: AB = 6 cm, BC 
= 8 cm, BF = 4 cm. Let a be the angle between AH and BD. Determine 
cos 2a. 

Task 
2 

Distances Between 
Spatial Elements 

A cube (ABCD.EFGH) has an edge length of 5 cm. M is the 
intersection of AF and BE. N is the midpoint of EH. Determine the 
distance between BH and MN. 

 
Table 4. Spatial Ability Components Measured 

Task 
Indicator 

Code 
Spatial Ability Component Measured 

T1 SA1 Understanding how to determine space diagonals in a rectangular prism 
T1 SA2 Applying the Pythagorean theorem to calculate diagonal lengths 

T1 SA3 
Using vector dot product to determine the angle between two lines in 
space 

T1 SA4 Applying trigonometric identity to determine cos 2a 
T1 SA5 Visualizing the relationship between skew diagonals in 3D space 
T2 SA6 Identifying coordinates of cube vertices 
T2 SA7 Determining the intersection of lines in three-dimensional space 
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Task 
Indicator 

Code 
Spatial Ability Component Measured 

T2 SA8 Applying the midpoint formula in 3D geometry 
T2 SA9 Visualizing spatial relationships between elements in a cube 
T2 SA10 Determining distances between spatial elements 

   
Instrument 

This study employed two instruments in data collection. First, an open-ended questionnaire 
was utilized to identify the knowledge needed by students in understanding concepts in geometry. 
The questionnaire was distributed to and completed by the students. We also conducted open-
ended interviews with the lecturers to map metacognitive questions and forms of scaffolding used 
to help the students solve geometry problems. Second, a learning outcome test was performed to 
measure the effectiveness of the flipped classroom combined with a metacognitive scaffolding 
approach on students’ spatial ability. 

The learning outcome test was developed based on established theoretical frameworks of 
spatial ability, including three-dimensional visualization, spatial relations, and geometric 
transformations. Content validity was examined through expert judgment involving three 
mathematics education experts, who evaluated the relevance, clarity, and representativeness of test 
items. Revisions were made based on their feedback before the instrument was administered. 
Sample indicators included students’ ability to determine angles between spatial elements, 
visualize non-coplanar diagonals, and calculate distances between lines and points in three-
dimensional space. 
 
Procedures 

We conducted the study in two stages: the qualitative exploratory stage and the quantitative 
experimental stage. At the first stage, a qualitative approach was used to identify students’ needs in 
understanding spatial geometry concepts, as well as the forms of metacognitive questions and 
scaffolding used by the instructor. The process of collecting data involved using a student 
questionnaire, lecturer interviews, and observations. The collected data were analyzed to identify 
important knowledge types for geometry instruction, problems faced by students, and teaching 
guidance provided. In the second stage, quasi-experimental research, pre- and post-test, and 
control groups were applied. There were 92 participants, divided into three groups. Class A 
practiced Flipped Classroom learning and metacognitive guidance, Class B practiced traditional 
teaching methods, and Class C practiced Flipped Classroom without guidance. The research process 
lasted for several weeks, depending on the teaching plans for these classes. Learning materials, 
teaching instructions, and learning tasks were standardized. Students from all classes had access to 
three different media for learning, i.e., face-to-face, asynchronous online (through interactive video 
formats), and a combination of both. All students completed learning tasks, recorded their learning 
processes, and ensured that every student had access to strategy implementation skills through 
three professional lecturers, who were expert practitioners in using strategies for their respective 
classes. 

Analysis 
What did we do? We combined two different approaches: qualitative and quantitative 

analysis. When it came to qualitative analysis, we focused on patterns in students’ understanding of 
spatial geometry, types of metacognitive questions used by the lecturer, and types of scaffolding 
used to support students. We used coding to analyze open-ended survey answers, interview 
transcriptions, and notes to identify major themes related to students, their needs, their struggles, 
and effectiveness in supporting students with understanding spatial concepts. On the quantitative 
analysis side, we performed analysis using descriptive and inferential statistics. We performed a 
comparison between students’ scores, using the pre-test and post-test. We also calculated the 
Normalized Gain (N-Gain) to measure the relative improvement in learning achievement. To ensure 
rigors in this quantitative analysis, we performed tests on normality using the Shapiro-Wilk and 
homogeneity of variance using Levene’s test. We carried out a difference test between groups using 
an independent t-test. We also carried out a post-hoc using the Tukey HSD to check the differences. 
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According to the analysis results, the group using a flipped classroom with metacognitive 
scaffolding (Class A) demonstrated the highest increase in post-test scores and N-Gain, significantly 
different from the other groups. This also showed that by utilizing metacognitive scaffolding in 
flipped instruction, students could understand spatial geometry concepts much better. To 
complement statistical significance testing, effect size was calculated using Cohen’s d to determine 
the magnitude of differences between instructional conditions. The inclusion of effect size provides 
a more comprehensive interpretation of instructional effectiveness beyond p-values alone. 
 

RESULTS AND DISCUSSION 

Q1: What do students need to understand concepts in geometry? What kind of metacognitive 
questions do teachers need to develop to instill geometric spatial skills in students, and 
what form of scaffolding should they take?? 
 

The findings of the questionnaire analysis and observations made regarding students’ 
completion of tasks indicated that students required four different kinds of knowledge to 
understand the geometric concepts presented in Figure 1. 

 

 
Figure 1. Knowledge needed by Students in Geometry Learning based on the Questionnaire’s 

Response Analysis 
 

The results of the questionnaire analysis showed that 39% of students responded favorably 
to the statement “an understanding of 3D coordinates is required to comprehend how a point is 
represented in three-dimensional space (𝑥, 𝑦, 𝑧)”. Most students concurred that knowing 3D 
coordinates is necessary in a number of situations, including figuring out where a point is on a 
plane or how it is projected onto a line and a plane. Students reported having trouble converting 
information from algebraic form to visual representation and visualizing the relationship between 
points in a 3D coordinate system. To minimize these problems, teachers can use software or 
concrete manipulatives to help students understand how points and coordinates interact in space. 
The following statement from a student supports this finding: 
 
" I can understand the coordinates of a point, but it’s hard to imagine how a diagonal line in a block 
fits in three-dimensional space. “ 
 

Twenty-one percent (21%) of respondents agreed that knowledge about geometric 
transformations can be used to overcome the difficulty in changing coordinates after moving a 
point or shape in three-dimensional space. In this case, students need to understand how an object 
changes its position in space due to translation, rotation, or reflection. To minimize this difficulty, 
students must be given dynamic geometry-based exercises using software such as GeoGebra, 
SketchUp, or Wolfram Alpha that facilitate understanding of how transformations occur 
interactively. In addition, students need to be given tutorials on how to manipulate virtual objects 

Knowledge Needed by Students 

distance and angle relationships in space 

visualization of geometric objects 

geometric transformation 

understanding of 3D representation 
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in 3D to see their coordinates change due to transformation. A student’s statement supporting this 
finding is presented below. 
 
" I am still confused when the point is moved 3 units to the right. I have no idea how to change its 
coordinates in a 3D system."                          
 

Nineteen percent (19%) of respondents thought that they had difficulty in imagining spatial 
geometric shapes, such as cubes, blocks, inclined planes, and spatial diagonals. In other words, they 
struggled to comprehend the perspective of an object, particularly when it came to tasks that 
involve angles between lines, distances from points to lines, or points to planes. In such 
circumstances, students with less visualization power face difficulties in visualizing the data 
provided, either in oral or written form, and making it easier to comprehend in their minds. In 
response to these issues, learners may be provided with more activities centered on the basics of 
actual image representations or with augmented reality to enhance their visualization power. 
Students should be provided with opportunities to practice drawing three-dimensional shapes 
either manually or through graphical representations. The following represents the perspective of a 
respondent about the importance of visualizing geometric objects. 

" I have difficulty with the relationship between angles on lines, the distance between points and lines, 
or points to planes." 
 

Around 15% of the population highlighted the importance of constructing knowledge on the 
relationship between space and distance/angle, as this is fundamental in understanding how 
certain elements of geometry fit together. The difficulty experienced by students in this section lies 
in how they relate mathematical formulas to their spatial understanding. To overcome this 
challenge, students can be provided with a visual model that can show how angles are formed 
between two lines or two planes in space, either through manual diagrams or digital animations. 
The following is an excerpt from a student interview related to this finding. 
 
“I can calculate the length of the interior diagonal of a cuboid, but I have no idea how to determine the 
angle between two diagonals." 
 

In general, of the four types of geometric knowledge shown in Figure 1, understanding 3D 
coordinates is the most crucial knowledge that students need for developing spatial ability and is 
the key to mastering all spatial geometry concepts. Calculating distances and angles, as well as 
visualizing forms and object changes in space, remain the primary challenges that students face in 
geometry learning. Therefore, integrating technology-based approaches into geometry classes, such 
as interactive geometry software and 3D simulations, can help strengthen students’ spatial ability 
through interactive and problem-solving-based learning strategies. After determining the types of 
geometric knowledge needed by students in geometry learning, we identified the forms of 
metacognitive questions frequently asked by the lecturer during the lesson. Figure 2 illustrates the 
distribution of metacognitive question types posed during the geometry instruction. 

 

 
Figure 2. Metacognitive Questions asked by the Lecturer during the Lesson 

Transfer of knowledge to real-world contexts 

Problem-solving strategy 
 

awareness of understanding 
 

Metacognitive Question Form 
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According to this study’s findings, lecturers frequently posed questions that can help students 
realize how far they understand the concepts being taught. In this case, 51% of the activities carried 
out by the lecturers are related to metacognitive questions that promote students’ awareness of 
whether they have understood a concept. This indicates that the lecturers have been trying to 
stimulate students to identify parts of the learning that students have or have not understood. With 
this stimulation, students can recognize whether they need to overcome difficulties in visualizing 
spatial geometry objects. Therefore, the lecturers must encourage more individual reflection 
through group discussions and/or using visual aids to minimize students’ difficulties in 
understanding spatial representations. The following is an example of metacognitive questions 
asked by the lecturers to awaken students’ awareness of their geometry understanding. 
 
Lecturer How did you find out that the two calculated diagonals lie in three-dimensional space? 

(#Task1) 
Student 1 "I knew that the diagonal BD lies on the base plane of the cuboid, and AH is the diagonal of 

one of the vertical sides of the cuboid. But I was confused about how to determine the angle 
between the two, because they do not lie in the same plane." 

Student 2 " I applied the Pythagorean theorem to calculate the length of the diagonals BD and AH, 
but I did not understand how to determine the angle between them. I am aware that an 
angle is formed when two lines meet, but how can I figure that out?" 
 

 
Furthermore, 28% of metacognitive questions posed by the lecturers were aimed at assisting 

students in choosing, comparing, and evaluating their problem-solving strategy. The observation 
results showed that students struggled to select the most efficient strategy for calculating distance 
or angle in three-dimensional space. To overcome these difficulties, lecturers can ask students to 
compare several problem-solving methods in groups and use interactive technology or applications 
to explore various visual strategies. An example of metacognitive questions that were aimed at 
helping students select, compare, and evaluate their problem-solving strategy is presented below. 
 
Lecturer How did you make sure that point M is really the intersection of AF and BE?? (#Task2) 
Student 1 " I was aware that point M is the intersection of two lines, but I was confused about how to 

determine its exact position. Should I use a coordinate system?" 
Student 2 I used a vector approach to determine M, but I had trouble visualizing the positions of the 

lines in the cube. I tried drawing it, but it was hard to understand the spatial relationship." 
 

Twenty-one percent (21%) of metacognitive questions asked by the lecturers were related to 
the transfer of knowledge to real-world contexts. This finding indicated that questions related to 
the application of spatial geometry concepts in real life were rarely found in the classroom. In fact, 
knowing the connection between geometry concepts and their real-world applications can increase 
students’ learning motivation. This finding also implies that the lecturers need to ask more real-
world and case-based questions to help students connect geometry concepts to real situations. An 
example of these metacognitive questions can be seen below. 
 
Lecturer “If you were an engineer, how would you apply the concept of point to plane distance in a 

construction project? (#Task2) 
 

Metacognitive questions asked by the lecturers typically focused on raising students’ 
awareness of geometry understanding and problem-solving strategies. Metacognitive questions 
related to knowledge transfer to real-world contexts had the lowest percentage, even though this 
aspect is important for building students’ motivation and improving their critical thinking skills. In 
addition, technology-based approaches and group discussions can help students evaluate their 
geometric understanding and problem-solving strategies. Therefore, lecturers need to ask various 
types of metacognitive questions to ensure that students not only understand spatial geometry 
concepts but are also able to apply them in real-world situations. The section discusses the types of 
scaffolding provided by the lecturers in the learning process we observed. We provide links to the 
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scaffolding questions asked by the lecturers at each meeting. A summary of the findings is 
presented in Table 5 and Figure 3. 
 

Table 5. Metacognitive Questions and Scaffolding Provided by the Lecturers 

Metacognitive 
questions 

Scaffolding 
Type of 

Scaffolding 
How did you know that 
the two calculated 
diagonals lie in three-
dimensional space? 
(#Task1) 

Consider the diagonals BD and AH as two vectors in 
space. Can you imagine how they interact with each 
other? 

Conceptual 
Scaffolding  

Let’s use a model of a cuboid or a 3D image to visualize 
how the two diagonals meet in space 
The first step is to identify the position vectors for each 
diagonal. Have you determined the coordinates of each 
point? 

Procedural 
Scaffolding 

Use the dot product formula to calculate the angle 
between these two vectors. Do you remember the 
formula? 
Can you explain why we use the dot product to 
determine the angle between the two diagonals? 

Metacognitive 
Scaffolding 

Is there another way to do this besides using the vector 
approach? 

How did you ensure 
that point M is truly the 
intersection of AF and 
BE? (#Task2) 

Let’s use a cube diagram and mark the important 
points. Can you see how AF and BE intersect? 

Conceptual 
Scaffolding 

We can visualize the intersection of two lines in 3D 
coordinates. Set the origin at one corner of the cube and 
observe how the other points are positioned. 
The first step is to write the parametric equations for 
lines AF and BE. Have you found the direction vectors 
for each line? 

Procedural 
Scaffolding 

Let’s determine what the intersection point is by making 
the parametric equations equal to one another. What 
are the results? Do they turn out as you anticipated? 
What would happen to the distance between BH and 
MN if the point M moves in the opposite direction? 

Metacognitive 
Scaffolding 

Is there another way to find the intersection point that 
does not use coordinates? 

 
 

 
 

Figure 3. Scaffolding Used by The Lecturers 

Teaching Scaffolding Form 

Metacognitive Scaffolding 

Procedural scaffolding 
 

Conceptual scaffolding 
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From the details found in Table 5 and Figure 3, the most common type of Conceptual 
Scaffolding recorded was 44%. This shows that lecturers mainly focused on assisting students to 
understand basic concepts in geometry (such as the relationship between points, lines, and planes) 
before engaging them in solving spatial geometry problems. A proper understanding of concepts 
will allow the learner to visualize and understand different objects in three-dimensional space. 
Additional support that lecturers provided to students involved assisting them in understanding 
the procedures used in solving geometric problems (around 31%). This appears to be intended for 
students who are lacking in knowing whether they can identify the procedures correctly or apply 
them appropriately when solving problems. To enhance the understanding of students, the lecturer 
could assist in presenting detailed processes with the aid of worksheets and assist with 
understanding the concepts in detail, so that those who might be lacking in understanding the 
processes involved in solving problems effectively can be helped with the resources available. 
Metacognitive scaffolding support was used least of all (around 24%). This implies that reflective 
questions intended to assist learners in understanding and critically evaluating the problem-solving 
process were least likely to be used by lecturers. This is good because studies have indicated that 
when students are prompted to regularly ask reflective questions and engage in reflecting on the 
problem-solving process itself, critical thinking is enhanced, and the problem-solving abilities of 
students are improved. Further details regarding the types of scaffolding provided throughout the 
instructional process are outlined in Table 6. 
 

Table 6. Types of Scaffolding Provided throughout the Learning Process 

Conceptual Scaffolding Procedural Scaffolding Metacognitive Scaffolding 

• "Before we calculate the 
distance from a point to a 
plane, let's first understand 
how to determine the 
normal vector of a plane." 

• "How can we determine the 
angle between two lines in 
space using the dot 
product?" 

• "Take a look at this 
example of cube 
visualization before 
calculating the length of its 
space diagonal" 

• “First, find the vector 
connecting the two points. 
After that, use the vector 
distance formula to calculate 
its length." 

•  "Before finding the distance 
between a point to a plane, 
write down the equation of the 
plane and make sure the given 
point does not lie in the plane." 

• "Use the Pythagorean theorem 
in the first step, then continue 
with the vector approach if 
needed." 

• "Can you explain the steps 
you used to determine the 
intersection point of the 
two lines within the 
cube?” 

• "How can you be sure that 
your answer is correct?" 

• "Would applying an 
alternative method yield 
the same result? Explain 
your reasoning.” 

 
Q2: To what extent is the integration of the flipped classroom and metacognitive scaffolding 
effective in geometry learning? 

This section discusses the results of the descriptive analysis on students’ pretest and post-
test mean scores. According to Table 7, the mean pre-test scores for the three groups were 
relatively similar: Class A (Flipped Classroom with Metacognitive Scaffolding) scored 64.90, Class B 
(Conventional) scored 64.53, and Class C (Flipped Classroom without Scaffolding) scored 66.39. 
The scores speak for themselves: before anything happened to any of them, the classes were quite 
similar.  

There was a nice widening of the disparity after the intervention: Class A averaged 79.06 on 
the post-test, Class C averaged 75.06, and Class B averaged 69.39. Classes had made the greatest 
gain between pre- and post-test in Class A, which would suggest that the metacognitive scaffolding 
work and flipping complemented each other better than the traditional approach or flipping alone 
in improving spatial ability. 
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When we check the results for normalized gain (N-gain), again the pattern continues. Class A 
takes first place with an N-gain of 0.386, followed by Class C with an N-gain of 0.241 and Class B 
with an N-gain of 0.119. We can thus assert that Class A experienced a quicker gain in learning 
achievements than the others. In spite of the flipped classroom method being implemented for 
Class C, it has failed to attain a high N-gain comparable to Class A. 

The fact that Class B consistently performed lower in both post-test scores and N-Gains 
suggests that perhaps traditional teaching methods are not as conducive to enhancing spatial 
thinking. The overall results lend credibility to the understanding that metacognitive scaffolding in 
a flipped classroom environment is more conducive to student learning than either teaching 
method individually. They also serve to illustrate the importance of metacognitive scaffolding in 
understanding complex geometric concepts. 
 

Table 7. Descriptive Analysis Results 

Class Mean Pre-Test Mean Post-Test Mean N-Gain Std Error 
A 64.90 79.06 0.386 0.82 
B 64.53 69.39 0.11 0.85 
C 66.39 75.06 0.24 0.91 

 
As presented in Figure 4, the results of the descriptive analysis are arranged in an organized 

manner for better comprehension and explanation. From the line graph showing the comparison of 
pre-test and post-test results, it is clearly illustrated that students in Class A, Flipped Classroom 
with Metacognitive Scaffolding, rise further compared to students in Class B (Conventional) and 
Class C (Flipped Classroom Without Scaffolding). From the N-Gain line graph, it is likewise noted 
that Class A has the greatest growth, followed by Class C, and finally Class B with the lowest growth 
rate. It is noted that one of the most significant aspects here is the integration of metacognitive 
scaffolding, which is significant for producing better student results. 

 

 
Figure 4. Visualization of the Descriptive Data 

 
Afterward, we conducted inferential statistics to address the research questions. Normality 

test: We collected the post-test results for each class and carried out the Shapiro-Wilk test for each 
to test for normality. According to Table 8, we observed that all the p-values are greater than 0.05, 
indicating that the results after the post-test for all the classes are normally distributed. Therefore, 
a clear path is opened to the next tests, which are homogeneity tests and hypothesis tests. 
 

Table 8. Normality Testing 

Class W Statistic p-value Normality 
A (Flipped + Scaffolding) 0.97 0.45 Yes 
B (Conventional) 0.96 0.30 Yes 
C (Flipped without Scaffolding) 0.95 0.25 Yes 
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A test for checking the homogeneity of variances among the three groups of scores was 
performed, and it produced a result that showed that the variance among each of the three groups 
of scores is higher than 0.05 (see Table 9). This confirms the assumption that can be made for 
checking the equality of the mean scores. 

 
Table 9. Homogeneity Test Result 

Levene Statistic P-Value Homogeneous 
0.15 0.86 Yes 

Inferential test results were used to examine the scores of the pre-test and post-test among 
the three groups. From the test results, it was evident that there was a marked difference between 
Class A and Class B. This indicated that the use of the Flipped Classroom with Metacognitive 
Scaffolding yielded a better outcome than the Conventional method. It was also evident that there 
were diverging scores between Class A and Class C, which meant that the inclusion of Metacognitive 
Scaffolding yielded an additional learning advantage. Finally, from the inferential test, it was also 
evident that the Flipped Classroom method, irrespective of the inclusion of Metacognitive 
Scaffolding, yielded a higher outcome than the Conventional method, as shown in Table 10 
Comparison Test. 

Table 10. Comparison Test 

Comparison t-stat p-value Significance (p<0.05) 
A Vs B 7.22 0.001 Yes 
A Vs C 3.18 0.004 Yes 
B Vs C -4.02 0.001 Yes 

 
In order to find out which of the groups was significantly different from one another, the 

Tukey HSD Post-Hoc Test was carried out. From a review of the Table 11, Comparison Class Score, a 
number of pertinent issues can be deduced. First and foremost, the Class A (Flipped Classroom with 
Metacognitive Scaffolding) had a significantly higher average than Class B (Conventional) and Class 
C (Flipped Classroom without Scaffolding). In addition, Class C scored higher than Class B but fell 
far short of Class A. From this data, it is unequivocally clear that the best strategy to increase 
students' spatial ability is to employ a combination of a Flipped Classroom and Metacognitive 
Scaffolding. 

Table 11. Comparison Class Score 

Group 1 Group 2 
Mean 
Diff 

p-
value 

Significant 

A (Flipped + Scaffolding 
Metacognitive) 

B (Conventional) -9.67 0.001 Yes 

A (Flipped + Scaffolding 
Metacognitive) 

C (Flipped without Scaffolding 
Metacognitive 

-3.99 0.004 Yes 

B (Conventional) 
C (Flipped without Scaffolding 

Metacognitive 
5.67 0.001 Yes 

 
The findings showed that a combination of the Flipped Classroom with Metacognitive 

Scaffolding, Class A, can be considered the most powerful arrangement to enhance students' 
understanding of spatial geometry. The setting of the Flipped Classroom without Scaffolding, Class 
C, outperformed Class B, the conventional method, though it did not perform like the combination 
in Class A. From the observations, it can be seen that metacognitive scaffolding could be one of the 
critical contributors that enhance students' spatial reasoning when learning about geometry. 

There are four key points worth further discussion. First, analyzing the students' needs in 
comprehending geometric concepts highlights specific needs in developing spatial reasoning. The 
study also determines what kind of metacognitive questions instructors use to foster students' 
spatial geometry skills. Finally, it considers what type(s) of scaffolding best facilitate students in 
understanding spatial geometry concepts. The results reveal that students at the university level 
require strengthening in four areas: (1) understanding three-dimensional coordinates, (2) 
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mastering geometric transformations, (3) being able to visualize spatial figures, and (4) 
comprehending the relations between relevant geometric elements, such as angles and distances. It 
appears that a major hurdle to understanding three-dimensional geometry is the students' 
experience of difficulty in creating mental spatial representations. If students are not able to 
imagine the locations of points or orientations of lines in space, it becomes difficult to link algebraic 
representations to the appropriate spatial structures (Cromley et al., 2017; Harris et al., 2023; 
Ramful et al., 2017). Students who struggle to visualize the positions of points or the directions of 
lines in space often face challenges in linking algebraic representations to their corresponding 
spatial structures (Haciomeroglu & LaVenia, 2017; Harris et al., 2023; Pitta-Pantazi et al., 2020). To 
address these issues, instructional strategies should incorporate interactive visual tools, such as 
GeoGebra or Augmented Reality (AR), as recommended by previous studies (Xin, 2019). To address 
these difficulties, instructional methods need to utilize interactive visual tools, GeoGebra, AR, and 
other similar tools, as previous research has suggested. Such tools promote linking symbolic 
abstraction and spatial visualization for strengthening conceptual understanding of spatial 
geometry. 

Similarly, in scaffolding, the research highlights that teachers favor the use of conceptual and 
procedural scaffolding; in contrast, metacognitive scaffolding occurs very rarely. This is important, 
as metacognitive scaffolding is considered vital for developing learner autonomy and for enhancing 
the efficiency of students’ learning strategies (Tondorf & Prediger, 2022). The metacognitive 
scaffolding can assist university students to think about their own thinking processes and select an 
effective learning strategy so that they can successfully deal with complex spatial problem-solving 
tasks (Hartmann et al., 2024; Yimer & Ellerton, 2010). This lack of metacognitive scaffolding 
exposes a critical lack of training opportunities for the students to reflect on their learning 
experience. 

In the context of scaffolding, researchers saw that most of the scaffolding occurred 
conceptually and procedurally, whereas metacognitive scaffolding occurred only a little. This is 
noteworthy, as metacognitive scaffolding plays a crucial role in fostering learner autonomy and 
enhancing the effectiveness of students’ learning strategies (Chang et al., 2016; Hein & Prediger, 
2024; Kosko, 2020; Speer & Wagner, 2009). Metacognitive scaffolding is critical to enabling 
learners to take charge of their learning and to make students’ self-regulation of their own study 
more effective. Where metacognitive scaffolding is evident, university students can engage their 
cognitive skills in assessing their ways of thinking, selecting appropriate approaches, and 
developing more flexible ways of thinking when they encounter difficult spatial problems (Harris et 
al., 2023; Ramful et al., 2017). Limited metacognitive scaffolding suggests that perhaps students are 
not being sufficiently encouraged to develop critical ways of reflecting on their learning 
experiences. It is also important to recognize the blending of students’ conceptual and visual needs 
with the opportunity for metacognitive questioning and student scaffolding. Simply presenting 
information or teaching them how to do something may not suffice; a process of guidance through 
the thinking process ought to be applied for them to understand what they are to do and why a 
particular approach applies to a particular endeavor. 

This study examines the process of geometry learning in classes using a flipped class and 
metacognitive scaffolding. Findings show that this approach results in an additional productive 
improvement in spatial thinking, unlike other forms of instruction. This increase in spatial thinking 
can also be justified by constructivism, which advocates for meaningful learning to occur when 
learners are encouraged to develop their own concepts by creating learning experiences on their 
own, even though it is done in a guided manner (Sevinc & Lesh, 2022). This occurs in a flipped class 
since learners are initially challenged to learn on their own and become more independent and 
knowledgeable. There is also the element of a plan of thinking using metacognitive scaffolding to 
ensure the experimentation carried out by learners is more meaningful and cognitively related. The 
effective application of scaffolding has to fit the predominance of learners’ cognitive and 
metacognitive demands, allowing change along the learning path (Cevikbas & Kaiser, 2020; Kosko, 
2020). 
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Past research demonstrated a limited effect of implementing a flipped classroom strategy on 
a student’s conceptual understanding of math. Apart from that, research indicated a stronger 
probability of engaging students through a flipped classroom, while improving time on task is still 
unclear, especially where a reflective support strategy is absent (Cronhjort et al., 2018; Fredriksen, 
2021). From the current research, a conclusion can be drawn that a flipped classroom strategy is 
associated with enhanced understanding of spatial geometry, provided that the strategy is 
implemented together with a metacognitive support strategy. In other words, the impact of the 
flipped classroom strategy might change, depending more on its effective support than its form. 

The findings below elucidate why previous scaffolding research in mathematics education 
often seems to conflict. When research limits itself to either procedural or conceptual scaffolding, 
we frequently find improved task completion with limited transfer and independence (Nagle et al., 
2019). In contrast, this study suggests that metacognitive scaffolding encourages students to 
examine their own reasoning and contemplate relationships in space to develop a deeper 
conceptual understanding. The results, therefore, explain why scaffolding-based interventions do 
not always lead to the same results when different studies are compared. 

From a cognitive point of view, the gains we observe can be understood in terms of how 
learners coordinate multiple representations. Spatial geometry requires students to integrate 
symbolic formulas, visual diagrams, and internal spatial models. The flipped classroom design 
accommodates the creation of these representations in pre-class work, and in-class metacognitive 
scaffolding encourages students to monitor, adjust, and justify the products they have generated. 
This coordinated process may be the reason that students in the integrated condition outperform 
students in an unscaffolded flipped classroom design, where students often lack structured 
opportunities to regulate and refine their spatial reasoning. The sizes of those effects suggest that, 
not only are we seeing significant changes, but also that they are significant and meaningful 
changes. So, it’s not just significant, it’s significant, and it has some real meaning around it. Given 
the complexity of spatial geometry, and given that it’s a brief intervention, it also has pretty real-
world applicability and impact. 

The overall findings, then, are to some extent indicative that what promotes effective spatial 
geometry instruction is not exactly the tech format, but the degree to which the instruction is 
organized. This particular piece of research contributes to the overall literature by offering a 
clearer understanding of the means by which metacognitive scaffolding acts as a key bridge 
between the flipped classroom and organized, thought-strategically effective learning. This 
accordingly explains the mixed results found in the preponderance of flipped classroom research 
and sharpens the theory involving learner-centered education. 

The basic idea in this context is clearly related to learner-centered design. In such a system, it 
is clear that metacognitive scaffolding functions as the key connection to be made between where 
learners are and where they want to be in terms of higher-level cognitive capabilities (Hartmann et 
al., 2024; Trapman et al., 2018). If learners are helped to observe, monitor, and even think about 
their particular strategies, they can easily transition from being ‘information receivers’ to being 
‘drivers of their own development’ (Rach & Ufer, 2020). This, in turn, can be extremely important 
concerning something like spatial geometry, considering that learners have to be able to visualize, 
analyze, and eventually decide based on complexly related spaces (Montenegro et al., 2018; Tall, 
2008; Yao, 2022). 

This inclusion also ensures that time management plays a major part in the class sessions; 
more space for metacognitive activity can be provided through dialogue and feedback sessions. 
This approach is more productive than relying on conventional lectures. When reflective practices 
are also incorporated into the flipped learning approach, more effective understanding and 
development of problem-solving abilities may be achieved (Cevikbas & Kaiser, 2020; Shaughnessy 
et al., 2021). Thus, the flipped approach to learning and teaching, augmented by metacognitive 
practices, not just proves to be more productive than conventional ones for improving spatial 
ability but also provides a more effective and reflective approach to learning by being more 
autonomous and meaningful—a factor that becomes highly necessary for geometry learning in the 
digital world. 
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LIMITATIONS 

It must be noted, however, that there are some aspects of the study to be improved in further 
research. For instance, the present study was able to cover only two major topics in spatial 
geometry. Moreover, it was noticed that while lecturers and students participated in this survey, 
they came from a particular institution, which may introduce some specific features reflecting a 
particular ecological context. It is also to be noted that while this study employed both qualitative 
and quantitative methods, there was no attempt to analyze development patterns in the 
metacognitive abilities of students using longitudinal approaches. 

From what is found and with regard to what was not confirmed, it is suggested that two 
general ways of further research have been identified. First, it is noted that the issues explored and 
focused on in this research were related to angles and distances of elements in cubes and cuboids. 
This way, further research should include more complex items, such as geometry about curved 
surfaces, transformation geometry, and other issues that require better visualization skills. Second, 
it is noted that the research is focused on short-term practice. Further research is needed to trace 
and explain how students’ metacognitive skills change over time and how students' spatial 
understanding is stored and transferred. 

 
CONCLUSION 

However, the research aims to highlight the importance of geometry, as a branch of 
mathematics, while employing a flipped classroom integrated with metacognitive scaffolding 
techniques. According to the research result, there is a clear indication of the need for further 
development in certain important aspects, such as understanding three-dimensional coordinates, 
gaining knowledge about geometric transformations, developing spatial imagination, and grasping 
the relationship between elements of a geometric shape, such as its angles. It emphasizes the ideal 
practice of teaching geometry, which is not just about procedures, as it is lacking in filling the 
conceptual gaps involved in these important aspects. Students are not only able to understand the 
main ideas but are also able to improve their metacognitive skills through reflection, evaluation, 
and decision-making in solving problems via a combination of a flipped classroom structure and 
metacognitive scaffolding techniques, which is more effective than using traditional teaching 
approaches, as well as the flipped classroom approach only. 

What this study shows is that a flipped classroom can already lead to better learning results 
than traditional teaching, even without metacognitive scaffolding. The reason seems to be that 
seeing visual and digital materials in advance of the class helps students build initial spatial ideas 
beforehand, after which they tackle in-class problems. But when you combine it with metacognitive 
scaffolding, the approach gets even stronger. By explicitly guiding students to monitor and adjust 
their thinking and to fine-tune their spatial reasoning, the model becomes more effective. Overall, in 
this study, the flipped classroom paired with metacognitive scaffolding was found to yield greater 
improvements than conventional instruction alone and the flipped approach sans scaffolding. 
Independent study is combined with cognitive reinforcement and guided reflection. In light of these 
findings, the geometry instructions should include reflection-based learning strategies, particularly 
concerning topics beyond advanced visualization and spatial reasoning. However, not all uses of 
metacognitive scaffolding are effective; for example, it can perform poorly when the scaffolding is 
too general, or when it is not coherently matched to the knowledge which the students already 
possess, or when used in a manner limiting students from developing their own strategies. These 
subtleties indicate that adaptive, context-sensitive scaffolding design is necessary rather than a 
one-size-fits-all collection of metacognitive prompts. 
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