Biomechanical Analysis of Table Tennis Racket Performance Using Makassar Ebony Veneer: A Comparative Study

Authors

DOI:

https://doi.org/10.58524/jcss.v4i1.724

Keywords:

Biomechanical analysis, Table tennis, Racket performance, Makassar ebony veneer.

Abstract

Background: A racket's performance in controlling trajectory and manipulating the speed of the ball is greatly influenced by its structural characteristics and materials. The material of the table tennis racket can affect its performance, reducing the speed and control of the ball.

Aims: The main objective of this research is to analyze the biomechanical performance of the Garuda Unesa Speed (GUS) table tennis racket made from Makassar ebony veneer as the main material and to compare its attributes, particularly speed and control, with those of high-end commercial rackets.

Methods: This study applies a comparative design by comparing two types of rackets in table tennis. Two-dimensional kinematics analysis was also conducted using Kinovea software.

Result: Based on the t-test results with a non-parametric path, all variables showed a significant difference with a p-value of 0.01 (Sig < 0.05). However, one variable did not show a significant difference, namely the velocity variable, with a p-value of 0.05 (Sig < 0.05). If examined from the average value, the speed variable has a slight difference (a difference of 0.5). The average speed data shows that the Makassar ebony wood veneer racket has better speed.

Conclusion: Based on the results of biomechanical analysis, the reflection of the Makassar ebony wood veneer racket makes a good contribution to the speed and control of the table tennis racket. This finding has practical implications for designing an effective table tennis athlete smash and block game by utilizing the speed and control of a table tennis racket using Makassar ebony wood veneer.

Author Biographies

  • Wachid Sugiharto, Universitas Negeri Surabaya

    Lecture of Physical Education

    Reseacher of Sport Science

  • Nurhasan Nurhasan, Universitas Negeri Surabaya
    Lecturer (Physical Education)ProfessorRector
  • Dwi Cahyo Kartiko, Universitas Negeri Surabaya
    Lecturer (Physical Education)ProfessorVice Rector
  • Muchamad Arif Al Ardha, Universitas Negeri Surabaya

    Lecturer (Physical Education)

    M.Ed.,P.hD (National Dong Hwa University Taiwan)

    Head of the study program ( S1 PJKR FIKK Unesa)

  • Sauqi Sawa Bikalawan, Universitas Negeri Surabaya
    Master (Physical Education, Faculty of Sport Science and Health) Education
  • Sheva Edhu Wigraha, Universitas Negeri Surabaya
    Bachelor's degree (Physical Education, Health and Recreation, Faculty of Sports Sciences and Health)
  • Jay Mark Arbaan, Universitas Negeri Surabaya
    Bachelor's degree (Physical Education, Health and Recreation, Faculty of Sports Sciences and Health)

References

Ardha, M. A., Nurhasan, N., Kartiko, D. C., Yang, C. B., Bikalawan, S. S., Rizki, A. Z., & Herista, S. V. W. (2025). Identifying the research trend of sport biomechanics over the last 20 years: a bibliometric analysis of the scopus journal database. Physical Education Theory and Methodology, 25(1), 172–182. https://doi.org/10.17309/tmfv.2025.1.21

Asdar, M., Prayitno, P., Luknadaru, G., & Faridah, E. (2017). Sebaran, Potensi, dan Sifat-Sifat Kayu Eboni di Sulawesi [Disertasi, Universitas Gajah Mada].

Bańkosz, Z., & Winiarski, S. (2018). Correlations between angular velocities in selected joints and velocity of table tennis racket during topspin forehand and backhand. Journal of Sports Science & Medicine, 17(2), 330-338.

Bao, W., Tan, Y., Ying, Z., Xue, R., Xu, X., Duan, S., Lin, H., & Chen, H. (2025). An investigation of the mechanical properties of ti films reinforced with wood composites by growing ti particles on a wood substrate. Polymers, 17(5), 583-596. https://doi.org/10.3390/polym17050583

Brich, Q., Casals, M., Crespo, M., Reid, M., & Baiget, E. (2024). Quantifying hitting load in racket sports: A scoping review of key technologies. International Journal of Sports Physiology and Performance, 19(6), 519–532. https://doi.org/10.1123/IJSPP.2023-0385

Buragohain, M. K. (2017). Composite Structures: Design, Mechanics, Analysis, Manufacturing, and Testing, London : Routledge.

Chou, C. Y., Chen, Z. H., Sheu, Y. H., Chen, H. H., Sun, M. Te, & Wu, S. K. (2025). TTSwing: A dataset for table tennis swing and racket kinematics analysis. Scientific Data, 12(1), 1–9. https://doi.org/10.1038/s41597-025-04680-y

Deng, J., Wei, X., Zhou, H., Wang, G., & Zhang, S. (2020). Inspiration from table tennis racket: Prepare rubber-wood-bamboo laminated composite (RWBLC) and its response characteristics to cyclic perpendicular compressive load. Composite Structures, 241(1), 1-12. https://doi.org/10.1016/j.compstruct.2020.112135

Han, L. (2022). A table tennis motion correction system based on human motion feature recognition. Security and Communication Networks, 2022(1), 1-9. https://doi.org/10.1155/2022/7049429

Iino, Y., & Kojima, T. (2016). Effect of the racket mass and the rate of strokes on kinematics and kinetics in the table tennis topspin backhand. Journal of Sports Sciences, 34(8), 721–729. https://doi.org/10.1080/02640414.2015.1069377

Jawad, M. K., Hussein, A. A. H., & Neama, N. S. (2025). Biomechanic Variables and Volleyball Serve Receiving Skills: The Role of Special Exercises. Journal of Coaching and Sports Science, 4(1), 66–75. https://doi.org/10.58524/jcss.v4i1.601

Jia, M., Sun, B., Jia, M., Liu, Y., & Zhang, D. (2025). Comparative study on the performance of different table tennis rubbers. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2025(1). https://doi.org/10.1177/17543371241310338

Kumamoto, R., Loh, P. Y., He, Y., Ferlinghetti, E., Lancini, M., & Uno, T. (2025). Impacts of racket handle design on table tennis topspin forehand rally performance among beginner players. Sports 2025, 13(22), 1-12. https://doi.org/10.3390/SPORTS13010022

Langitan, F. W. (2018). The influence of training strategy and physical condition toward forehand drive ability in table tennis. IOP Conference Series: Materials Science and Engineering, 306(1), 1-6. https://doi.org/10.1088/1757-899X/306/1/012043

Lanzoni, I. M., Bartolomei, S., Michele, R. Di, Gu, Y., Baker, J. S., Fantozzi, S., & Cortesi, M. (2021). Kinematic analysis of the racket position during the table tennis top spin forehand stroke. Applied Sciences, 11(11), 1-8. https://doi.org/10.3390/APP11115178

Lees, A. (2003). Science and the major racket sports: A review. Journal of Sports Sciences, 21(9), 1-27. https://doi.org/10.1080/0264041031000140275

Li, W., Liu, X., An, K., Qin, C., & Cheng, Y. (2023). Table tennis track detection based on temporal feature multiplexing network. Sensors, 23(3), 1-29. https://doi.org/10.3390/s23031726

Li, X. Y. (2022). Study on the performance of table tennis racket made of carbon fiber by numerical simulation. Journal of Technology, 37(3), 1-6.

Liu, C., Hayakawa, Y., & Nakashima, A. (2012). Racket control and its experiments for robot playing table tennis. 2012 IEEE International Conference on Robotics and Biomimetics, ROBIO 2012 - Conference Digest, 241–246. https://doi.org/10.1109/ROBIO.2012.6490973

Liu, J. Q., Wang, B., Zhao, X., & Dou, Y. (2014). The application of rubber materials on table tennis racket. Applied Mechanics and Materials, 473(1), 116–120. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.473.116

Lu, Y., Ren, J., Wang, J., & Wang, Y. (2024). Effect of table tennis balls with different materials and structures on the hardness and elasticity. PLOS ONE, 19(4), 1-13. https://doi.org/10.1371/JOURNAL.PONE.0301560

Manin, L., Poggi, M., & Havard, N. (2012). Vibrations of table tennis racket composite wood blades: modeling and experiments. Procedia Engineering, 34(1), 694–699. https://doi.org/10.1016/J.PROENG.2012.04.118

Meier, E. (2013). Macassar Ebony. The Wood Database. https://www.wood-database.com/macassar-ebony/

Miyazawa, Y., Hadano, A., & Tanaka, K. (2020). Effects of pimple height of a table tennis rubber on ball rebound behavior. Proceedings 2020, 49(1), 1-7. https://doi.org/10.3390/PROCEEDINGS2020049055

Mousset, K., Violette, L., & Épron, A. (2021). The ITTF and Olympic recognition of table tennis: from pure amateurism to the Asian markets (1926–1988). Sport in History, 41(4), 578–595. https://doi.org/10.1080/17460263.2021.1919187

Rinaldi, R. G., Manin, L., Moineau, S., & Havard, N. (2019). Table tennis ball impacting racket polymeric coatings: Experiments and modeling of key performance metrics. Applied Sciences, 9(1), 1-16. https://doi.org/10.3390/APP9010158

SONY. (2013). E PZ 18-105mm F4 G OSS. https://www.sony.co.id/id/electronics/lensa-kamera/selp18105g#product_details_default

SONY. (2019). ILCE-6400. https://www.sony.co.id/id/interchangeable-lens-cameras/products/ilce-6400

Stigasport. (2024). CYBERSHAPE® Carbon CWT Truls Edition. https://www.stigasports.com/en/product/cybershape-carbon-cwt-truls-edition?sizeX=0&+sizeY=0&sizeY=0

Sun, W. M., Zhang, S. Q., & Hao, S. R. (2012). The soleplate materials and performance of table tennis bat with the composite properties of materials in material engineering. Advanced Materials Research, 583(1), 232–235. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.583.232

Tabrizi, S. S., Pashazadeh, S., & Javani, V. (2020). Data acquired by a single object sensor for the detection and quality evaluation of table tennis forehand strokes. Data in Brief, 33(1), 1-9. https://doi.org/10.1016/J.DIB.2020.106504

Wang, J. (2012). Application of composite materials on sports equipments. Applied Mechanics and Materials, 155(1), 903–906. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.155-156.903

Wong, D. W. C., Lee, W. C. C., & Lam, W. K. (2020). Biomechanics of table tennis: A systematic scoping review of playing levels and maneuvers. Applied Sciences, 10(15), 1-21. https://doi.org/10.3390/APP10155203

XIOM. (2024a). i 5 Twin Head. https://xiom.global/product/i-5-twin-head/621/category/178/display/1/

XIOM. (2024b). PRO-9 ITTF. https://xiom.global/product/pro-9-ittf/981/

Yin, T., Hao, L., Zhao, X., Fu, Z., Liu, C., & He, S. (2024). Dynamic characteristics and mechanisms of table tennis blades with the inclusion of special fiber laminates. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 41(3), 1626–1632. https://doi.org/10.13801/j.cnki.fhclxb.20230703.002

Yıldızbaş, A., Özlüsoylu, İ., İstek, A. (2022). Table tennis blade production and features. Bartın Orman Fakültesi Dergisi, 24(2), 394–404. https://doi.org/10.24011/BAROFD.1085278

Zhou, X., Wang, L., Huang, D., Liang, Y., Shi, Q., Yaying, H., Zhang, M., Pu, H., Wen, W., & Wu, J. (2021). Smart table tennis racket with tunable stiffness for diverse play styles and unconventional technique training (Adv. Mater. Technol. 10/2021). Advanced Materials Technologies, 6(10), 2170056. https://doi.org/10.1002/ADMT.202170056

Zhu, X., Zhang, M., Wang, X., Jia, C., & Zhang, Y. (2022). A portable and low-cost triboelectric nanogenerator for wheelchair table tennis monitoring. Electronics (Switzerland), 11(24), 1-11. https://doi.org/10.3390/ELECTRONICS11244189

Zwarenstein, M., Treweek, S., Gagnier, J. J., Altman, D. G., Tunis, S., Haynes, B., Oxman, A. D., & Moher, D. (2017). Chapter 10 Methods for Comparative Studies. BMJ, 337(7680), 1223–1226. https://doi.org/10.1136/BMJ.A2390

Downloads

Published

2025-06-18

How to Cite

Sugiharto, W., Nurhasan, N., Kartiko, D. C., Ardha, M. A. A., Bikalawan, S. S., Wigraha, S. E., & Arbaan, J. M. (2025). Biomechanical Analysis of Table Tennis Racket Performance Using Makassar Ebony Veneer: A Comparative Study. Journal of Coaching and Sports Science, 4(1), 128-141. https://doi.org/10.58524/jcss.v4i1.724