Physiology Sport Approaches: The Role of Walking in Dopamine Stimulation for Transforming Habits and Mental Health
DOI:
https://doi.org/10.58524/jcss.v3i2.526Keywords:
Dopamine, Habits, Mental health, Walking.Abstract
This study investigates the connection between dopamine stimulation, negative habit management, and mental health improvements through walking. Dopamine, a key neurotransmitter in the brain's reward system, plays a crucial role in motivation, self-control, and emotional regulation. This study aims to evaluate whether walking, as a form of altruistic behavior and social commitment, can stimulate dopamine release that promotes positive emotions, better self-regulation, and the reduction of negative habits. This descriptive quantitative study involved 250 respondents aged 20–50 who regularly walked 3 to 5 times per week. This study measured mental health parameters, including stress, anxiety, and depression, as well as negative habits, including overthinking and poor sleep patterns. The findings demonstrated significant improvements, including reductions in stress (-58%), anxiety (-53%), and depression (-54%), along with increases in happiness (+24%) and calmness (+20%). Behavioral changes were also observed, such as decreased overthinking (-45%) and poor sleep patterns (-46%), alongside enhancements in positive thinking (+27%), social awareness (+28%), and optimism (+29%). These changes suggest an increase in dopamine production associated with regular walking activities. This study highlights that walking is an accessible physical intervention that can enhance psychological well-being, reduce destructive behaviors, and strengthen dopamine-related neurobiological pathways. Additionally, this study contributes to positive psychology and exercise science by providing insights into the role of walking in supporting mental health and building personal resilience.
References
Ahmad, S., Wasim, S., Irfan, S., Gogoi, S., Srivastava, A., & Farheen, Z. (2019). Qualitative v/s. quantitative research- a summarized review. Journal of Evidence Based Medicine and Healthcare, 6(43), 2828–2832. https://doi.org/10.18410/jebmh/2019/587
Ambrosi, P., & Lerner, T. N. (2022). Striatonigrostriatal circuit architecture for disinhibition of dopamine signaling. Cell Reports, 40(7), 1-19. https://doi.org/10.1016/j.celrep.2022.111228
Baik, J.-H. (2020). Stress and the dopaminergic reward system. Experimental & Molecular Medicine, 52(12), 1879–1890. https://doi.org/10.1038/s12276-020-00532-4
Bull, F. C., Al-Ansari, S. S., Biddle, S., Borodulin, K., Buman, M. P., Cardon, G., Carty, C., Chaput, J.-P., Chastin, S., Chou, R., Dempsey, P. C., DiPietro, L., Ekelund, U., Firth, J., Friedenreich, C. M., Garcia, L., Gichu, M., Jago, R., Katzmarzyk, & Willumsen, J. F. (2020). World Health Organization 2020 guidelines on physical activity and sedentary behaviour. British Journal of Sports Medicine, 54(24), 1451–1462. https://doi.org/10.1136/bjsports-2020-102955
Chao, O. Y., Pum, M. E., Li, J.-S., & Huston, J. P. (2012). The grid-walking test: Assessment of sensorimotor deficits after moderate or severe dopamine depletion by 6-hydroxydopamine lesions in the dorsal striatum and medial forebrain bundle. Neuroscience, 202(1), 318–325. https://doi.org/10.1016/j.neuroscience.2011.11.016
Cools, R. (2008). Role of dopamine in the motivational and cognitive control of behavior. The Neuroscientist, 14(4), 381–395. https://doi.org/10.1177/1073858408317009
Corkrum, M., Covelo, A., Lines, J., Bellocchio, L., Pisansky, M., Loke, K., Quintana, R., Rothwell, P. E., Lujan, R., Marsicano, G., Martin, E. D., Thomas, M. J., Kofuji, P., & Araque, A. (2020a). Dopamine-evoked synaptic regulation in the nucleus accumbens requires astrocyte activity. Neuron, 105(6), 1036-1047. https://doi.org/10.1016/j.neuron.2019.12.026
Corkrum, M., Covelo, A., Lines, J., Bellocchio, L., Pisansky, M., Loke, K., Quintana, R., Rothwell, P. E., Lujan, R., Marsicano, G., Martin, E. D., Thomas, M. J., Kofuji, P., & Araque, A. (2020b). Dopamine-evoked synaptic regulation in the nucleus accumbens requires astrocyte activity. Neuron, 105(6), 1036-1047. https://doi.org/10.1016/j.neuron.2019.12.026
Douma, E. H., & de Kloet, E. R. (2020). Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. Neuroscience & Biobehavioral Reviews, 108(1), 48–77. https://doi.org/10.1016/j.neubiorev.2019.10.015
Elmer, T., Mepham, K., & Stadtfeld, C. (2020). Students under lockdown: Comparisons of students’ social networks and mental health before and during the COVID-19 crisis in Switzerland. PLOS ONE, 15(7), 1-22. https://doi.org/10.1371/journal.pone.0236337
Gao, Y., Xiong, Y., Liu, X., Liu, J., Li, J., & Wang, H. (2022). Examining how and why polygenic dopamine composite levels moderate adolescents’ vulnerability to peer victimization. Child and Adolescent Psychiatry and Mental Health, 16(1), 1-13. https://doi.org/10.1186/s13034-022-00521-7
Garland, E. L., Fredrickson, B., Kring, A. M., Johnson, D. P., Meyer, P. S., & Penn, D. L. (2010). Upward spirals of positive emotions counter downward spirals of negativity: Insights from the broaden-and-build theory and affective neuroscience on the treatment of emotion dysfunctions and deficits in psychopathology. Clinical Psychology Review, 30(7), 849–864. https://doi.org/10.1016/j.cpr.2010.03.002
Gilat, M., Bell, P. T., Ehgoetz Martens, K. A., Georgiades, M. J., Hall, J. M., Walton, C. C., Lewis, S. J. G., & Shine, J. M. (2017). Dopamine depletion impairs gait automaticity by altering cortico-striatal and cerebellar processing in Parkinson’s disease. NeuroImage, 152(1), 207–220. https://doi.org/10.1016/j.neuroimage.2017.02.073
Gupta, S., Bharatha, A., Cohall, D., Rahman, S., Haque, M., Majumder, M. A. A., Gupta, S., Bharatha, A., Cohall, D., Rahman, S., Haque, M., & Majumder, M. A. (2024). Aerobic exercise and endocannabinoids: A narrative review of stress regulation and brain reward systems. Cureus, 16(3), 1-19. https://doi.org/10.7759/cureus.55468
Harsing, L. G., Knoll, J., & Miklya, I. (2022). Enhancer regulation of dopaminergic neurochemical transmission in the striatum. International Journal of Molecular Sciences, 23(15), 1-36. https://doi.org/10.3390/ijms23158543
Kim, C., Kim, J., Song, I., Yi, Y., Park, B.-J., & Song, C. (2023). The effects of forest walking on physical and mental health based on exercise prescription. Forests, 14(12), 1-16. https://doi.org/10.3390/f14122332
Koblinger, K., Füzesi, T., Ejdrygiewicz, J., Krajacic, A., Bains, J. S., & Whelan, P. J. (2014). Characterization of A11 neurons projecting to the spinal cord of mice. PLoS ONE, 9(10), 1–12. https://doi.org/10.1371/journal.pone.0109636
Köhncke, Y., Papenberg, G., Jonasson, L., Karalija, N., Wåhlin, A., Salami, A., Andersson, M., Axelsson, J. E., Nyberg, L., Riklund, K., Bäckman, L., Lindenberger, U., & Lövdén, M. (2018). Self-rated intensity of habitual physical activities is positively associated with dopamine D2/3 receptor availability and cognition. NeuroImage, 181(1), 605–616. https://doi.org/10.1016/j.neuroimage.2018.07.036
Lee, S. J., Lodder, B., Chen, Y., Patriarchi, T., Tian, L., & Sabatini, B. L. (2021). Cell-type-specific asynchronous modulation of PKA by dopamine in learning. Nature, 590(7846), 451–456. https://doi.org/10.1038/s41586-020-03050-5
Li, Q., Otsuka, T., Kobayashi, M., Wakayama, Y., Inagaki, H., Katsumata, M., Hirata, Y., Li, Y., Hirata, K., Shimizu, T., Suzuki, H., Kawada, T., & Kagawa, T. (2011). Acute effects of walking in forest environments on cardiovascular and metabolic parameters. European Journal of Applied Physiology, 111(11), 2845–2853. https://doi.org/10.1007/s00421-011-1918-z
Luo, Y., & Roth, G. S. (2000). The Roles of dopamine oxidative stress and dopamine receptor signaling in aging and age-related neurodegeneration. Antioxidants & Redox Signaling, 2(3), 449–460. https://doi.org/10.1089/15230860050192224
Ma, R., Liu, T., Raymond Sum, K. W., Gao, T., Li, M., Choi, S. M., Huang, Y., & Xiang, W. (2021). Relationship among physical literacy, mental health, and resilience in college students. Frontiers in Psychiatry, 12(1), 1-8. https://doi.org/10.3389/fpsyt.2021.767804
Majcher-Maślanka, I., Solarz, A., Wędzony, K., & Chocyk, A. (2017). The effects of early-life stress on dopamine system function in adolescent female rats. International Journal of Developmental Neuroscience, 57(1), 24–33. https://doi.org/10.1016/j.ijdevneu.2017.01.001
Maletz, S. N., Reid, B. T., Baekey, D. M., Whitaker-Fornek, J. R., Bateman, J. T., Bissonnette, J. M., & Levitt, E. S. (2022). Effect of positive allosteric modulation and orthosteric agonism of dopamine d2 receptors on respiration in mouse models of rett syndrome. bioRxiv. 4(1), 1-30, https://doi.org/10.1101/2022.04.13.488220
Martel, J. C., & Gatti, M. S. (2020). Dopamine receptor subtypes, physiology and pharmacology: new ligands and concepts in schizophrenia. Frontiers in Pharmacology, 11(1), 1-17. https://doi.org/10.3389/fphar.2020.01003
Matar, E., Shine, J. M., Naismith, S. L., & Lewis, S. J. G. (2014a). Virtual reality walking and dopamine: Opening new doorways to understanding freezing of gait in Parkinson’s disease. Journal of the Neurological Sciences, 344(1), 182–185. https://doi.org/10.1016/j.jns.2014.06.054
Matar, E., Shine, J. M., Naismith, S. L., & Lewis, S. J. G. (2014b). Virtual reality walking and dopamine: Opening new doorways to understanding freezing of gait in Parkinson’s disease. Journal of the Neurological Sciences, 344(1), 182–185. https://doi.org/10.1016/j.jns.2014.06.054
Meng, X. (2024). Access to mental health services in urban areas: Examine the availability, affordability, and accessibility of mental health services in urban settings, particularly for individuals with intersecting marginalized identities. Current Opinion in Psychiatry, 37(3), 185-190. https://doi.org/10.1097/YCO.0000000000000924
Mengist, B., Lotfaliany, M., Pasco, J. A., Agustini, B., Berk, M., Williams, L. J., Forbes, M., Woods, R. L., Orchard, S. G., Ryan, J., McNeil, J. J., Owen, A. J., Beilin, L. J., Shah, R. C., Espinoza, S. E., Ganjali, S., Chong, T. T.-J., & Mohebbi, M. (2024). Gait speed, handgrip strength, and their combination, and risk of depression in later life: Evidence from a prospective study of community-dwelling older adults. Journal of Affective Disorders, 369(1), 218–226. https://doi.org/10.1016/j.jad.2024.09.155
Mignini, F., Sabbatini, M., D’Andrea, V., & Cavallotti, C. (2010). Intrinsic innervation and dopaminergic markers after experimental denervation in rat thymus. European Journal of Histochemistry, 54(2), 81–87. https://doi.org/10.4081/ejh.2010.e17
Novotna, J., Olsovska, J., Novak, P., Mojzes, P., Chaloupkova, R., Kamenik, Z., Spizek, J., Kutejova, E., Mareckova, M., Tichy, P., Damborsky, J., & Janata, J. (2013). Lincomycin biosynthesis involves a tyrosine hydroxylating heme protein of an unusual enzyme family. PLoS ONE, 8(12), 6–15. https://doi.org/10.1371/journal.pone.0079974
Oikonomou, V., Gkintoni, E., Halkiopoulos, C., & Karademas, E. C. (2024). Quality of life and incidence of clinical signs and symptoms among caregivers of persons with mental disorders: A cross-sectional study. Healthcare, 12(2), 1-21. https://doi.org/10.3390/healthcare12020269
Olken, F., & Rotem, D. (1995). Random sampling from databases: A survey. Statistics and Computing, 5(1), 25–42. https://doi.org/10.1007/BF00140664
Orcioli-Silva, D., Vitório, R., Nóbrega-Sousa, P., Beretta, V. S., Conceição, N. R. da, Oliveira, A. S., Pereira, M. P., & Gobbi, L. T. B. (2021). Cortical activity underlying gait improvements achieved with dopaminergic medication during usual walking and obstacle avoidance in parkinson disease. Neurorehabilitation and Neural Repair, 35(5), 406–418. https://doi.org/10.1177/15459683211000736
Park, Y.-M., Kanaley, J. A., Padilla, J., Zidon, T., Welly, R. J., Will, M. J., Britton, S. L., Koch, L. G., Ruegsegger, G. N., Booth, F. W., Thyfault, J. P., & Vieira-Potter, V. J. (2016). Effects of intrinsic aerobic capacity and ovariectomy on voluntary wheel running and nucleus accumbens dopamine receptor gene expression. Physiology & Behavior, 164(1), 383–389. https://doi.org/10.1016/j.physbeh.2016.06.006
Pulopulos, M. M., Baeken, C., & De Raedt, R. (2020). Cortisol response to stress: The role of expectancy and anticipatory stress regulation. Hormones and Behavior, 117(1), 1-10. https://doi.org/10.1016/j.yhbeh.2019.104587
Radwan, B., Liu, H., & Chaudhury, D. (2019). The role of dopamine in mood disorders and the associated changes in circadian rhythms and sleep-wake cycle. Brain Research, 1713(1), 42–51. https://doi.org/10.1016/j.brainres.2018.11.031
Reynolds, L. M., Hernandez, G., MacGowan, D., Popescu, C., Nouel, D., Cuesta, S., Burke, S., Savell, K. E., Zhao, J., Restrepo-Lozano, J. M., Giroux, M., Israel, S., Orsini, T., He, S., Wodzinski, M., Avramescu, R. G., Pokinko, M., Epelbaum, J. G., Niu, Z., & Flores, C. (2023). Amphetamine disrupts dopamine axon growth in adolescence by a sex-specific mechanism in mice. Nature Communications, 14(1), 1-22. https://doi.org/10.1038/s41467-023-39665-1
Rosso, A. L., Metti, A. L., Glynn, N. W., Boudreau, R. M., Rejeski, W. J., Bohnen, N., Chen, H., Johannsen, N. M., King, A. C., Manini, T. M., Pahor, M., Studenski, S. A., Fragoso, C. A. V., Rosano, C., & Group, for the L. S. (2018). Dopamine-related genotypes and physical activity change during an intervention: the lifestyle interventions and independence for elders study. Journal of the American Geriatrics Society, 66(6), 1172–1179. https://doi.org/10.1111/jgs.15369
Rozikin, A., Suherman, S., Farida, F., & Tasca, R. (2024). Investigating the relationship between environmental literacy and mathematical literacy toward computer self-efficacy in secondary school. Journal of Advanced Sciences and Mathematics Education, 4(2), 61–70. https://doi.org/10.58524/jasme.v4i2.363
Ruivo, D., Allen Gomes, A., & de Azevedo, M. H. P. (2024). Perceived causes of sleep problems in higher education students: an exploratory study. Psychological Reports, 0(0), 1-23. https://doi.org/10.1177/00332941241299730
Sagheddu, C., Devoto, P., Aroni, S., Saba, P., Pistis, M., & Gessa, G. L. (2023). Combined α2- and D2-receptor blockade activates noradrenergic and dopaminergic neurons, but extracellular dopamine in the prefrontal cortex is determined by uptake and release from noradrenergic terminals. Frontiers in Pharmacology, 14(1), 1-8. https://doi.org/10.3389/fphar.2023.1238115
Seixas, B. V., Smith, N., & Mitton, C. (2017). The qualitative descriptive approach in international comparative studies: using online qualitative surveys. International Journal of Health Policy and Management, 7(9), 778–781. https://doi.org/10.15171/ijhpm.2017.142
Sharples, S. A., Koblinger, K., Humphreys, J. M., & Whelan, P. J. (2014). Dopamine: A parallel pathway for the modulation of spinal locomotor networks. Frontiers in Neural Circuits, 8(1), 1-16. https://doi.org/10.3389/fncir.2014.00055
Speranza, L., di Porzio, U., Viggiano, D., de Donato, A., & Volpicelli, F. (2021a). Dopamine: The neuromodulator of long-term synaptic plasticity, reward and movement control. Cells, 10(4), 1-19. https://doi.org/10.3390/cells10040735
Speranza, L., di Porzio, U., Viggiano, D., de Donato, A., & Volpicelli, F. (2021b). Dopamine: The neuromodulator of long-term synaptic plasticity, reward and movement control. Cells, 10(4), 1-19. https://doi.org/10.3390/cells10040735
Statista, S. (2024). Share of adults worldwide who viewed stress as the biggest health problem in their country from 2018 to 2024. Statista. https://www.statista.com/statistics/1498280/stress-as-a-top-health-concern-worldwide/
Sturges, J., & Bailey, C. (2023). Walking back to happiness: The resurgence of latent callings in later life. Human Relations, 76(8), 1256–1284. https://doi.org/10.1177/00187267221095759
Torales, J., O’Higgins, M., Castaldelli-Maia, J. M., & Ventriglio, A. (2020). The outbreak of COVID-19 coronavirus and its impact on global mental health. International Journal of Social Psychiatry, 66(4), 317–320. https://doi.org/10.1177/0020764020915212
Tran, M. A. Q., Vo-thanh, T., Soliman, M., Ha, A. T., & Van Pham, M. (2024). Could mindfulness diminish mental health disorders? The serial mediating role of self-compassion and psychological well-being. Current Psychology, 43(15), 13909–13922. https://doi.org/10.1007/s12144-022-03421-3
Tsai, C.-L., Pan, C.-Y., Wang, T.-C., Tseng, Y.-T., Ukropec, J., Ukropcová, B., & Lin, T.-K. (2024). Effects of acute aerobic exercise with different intensities on cerebral dopamine/norepinephine/serotonin metabolites and executive-related oculomotor control in individuals with Parkinson’s disease. Mental Health and Physical Activity, 26(1), 1-8. https://doi.org/10.1016/j.mhpa.2024.100582
Tuan, B. N. (2024). University selection determinants in Vietnam: A case study of Thai Nguyen university of information technology and communication. Online Learning In Educational Research (OLER), 4(2), 97–111. https://doi.org/10.58524/oler.v4i2.427
Vidyadhara, D. J., Somayaji, M., Wade, N., Yücel, B., Zhao, H., Shashaank, N., Ribaudo, J., Gupta, J., Lam, T. T., Sames, D., Greene, L. E., Sulzer, D. L., & Chandra, S. S. (2023). Dopamine transporter and synaptic vesicle sorting defects underlie auxilin-associated Parkinson’s disease. Cell Reports, 42(3), 1-24. https://doi.org/10.1016/j.celrep.2023.112231
Vila, M. H., Pérez, R., Mollinedo, I., & Cancela, J. M. (2021). Analysis of gait for disease stage in patients with Parkinson’s disease. International Journal of Environmental Research and Public Health, 18(2), 1-10. https://doi.org/10.3390/ijerph18020720
Volkow, N. D., Michaelides, M., & Baler, R. (2019). The neuroscience of drug reward and addiction. Physiological Reviews, 99(4), 2115–2140. https://doi.org/10.1152/physrev.00014.2018
Westgarth, C., Christley, R., & Christian, H. (2022). A cross-sectional study of factors associated with regular dog walking and intention to walk the dog. BMC Public Health, 22(1), 1-17. https://doi.org/10.1186/s12889-022-12902-w
Westgarth, C., Christley, R. M., Marvin, G., & Perkins, E. (2017). I walk my dog because it makes me happy: A qualitative study to understand why dogs motivate walking and improved health. International Journal of Environmental Research and Public Health, 14(8), 1–18. https://doi.org/10.3390/ijerph14080936
WHO. (2023). Anxiety disorders. https://www.who.int/news-room/fact-sheets/detail/anxiety-disorders
WHO. (2024). Depression. https://www.who.int/health-topics/depression
Wild, S., & Schulze Heuling, L. (2020). How do the digital competences of students in vocational schools differ from those of students in cooperative higher education institutions in Germany? Empirical Research in Vocational Education and Training, 12(1), 1-18. https://doi.org/10.1186/s40461-020-00091-y
Wise, R. A., & Robble, M. A. (2020a). Dopamine and addiction. Annual Review of Psychology, 71(1), 79–106. https://doi.org/10.1146/annurev-psych-010418-103337
Wise, R. A., & Robble, M. A. (2020b). Dopamine and addiction. Annual Review of Psychology, 71(1), 79–106. https://doi.org/10.1146/annurev-psych-010418-103337
Withall, J., Jago, R., & Fox, K. R. (2011). Why some do but most don’t. Barriers and enablers to engaging low-income groups in physical activity programmes: A mixed methods study. BMC Public Health, 11(1), 1-13. https://doi.org/10.1186/1471-2458-11-507
Wratten, S., Flynn, J., Cooper, C., Griffths, N., Hall, R., Abetz-Webb, L., Ndife, B., & Goswami, P. (2022). POSB371 Patient and physician response scale preferences for clinical outcome assessments in sjogren’s: A qualitative comparison of visual analogue scale, numerical rating scale, and likert scale response options. Value in Health, 25(1), S233. https://doi.org/10.1016/j.jval.2021.11.1138

