ﬁ@ N Journal of Advanced Sciences and Mathematics Education

Volume 5, Issue 2,281 - 299
e_ISSN: 2798-2351
DOI: 10.58524/jasme.v5i2.813

Geometry from coastal life: A grounded theory of primary students’ 3D
geometry understanding in Northern Coastal West Java

Endang Wahyuningrum* Sudirman Camilo Andrés Rodriguez-Nieto
Universitas Terbuka, Universitas Terbuka, Universidad de la Costa,
INDONESIA INDONESIA COLOMBIA
Article Info Abstract

Article history:

Received: June 04, 2025
Revised: Sept 05, 2025
Accepted: Sept 22, 2025

Keywords:

3D geometry understanding;
Elementary students;
Grounded theory;

Northern Coastal Area.

Background: Although three-dimensional (3D) geometry is an essential
component of the elementary school mathematics curriculum, research exploring
how students develop spatial understanding of 3D geometric objects in authentic
learning contexts remains limited. Furthermore, the challenge of bridging visual,
verbal, and manipulative representations persists as a major gap in the literature.
Aims: This study aims to address this gap by examining the process through
which elementary students develop conceptual understanding of 3D geometry
using a grounded theory approach.

Method: The study was conducted at a public elementary school in Indramayu
Regency, West Java, Indonesia. A total of 26 students (20 female and 6 male, aged
11-12) voluntarily participated. Data were collected through 3D geometric
visualization tests and in-depth interviews focusing on students' thought
processes in imagining, comparing, and manipulating spatial forms. Data analysis
followed the three stages of grounded theory methodology: open coding, axial
coding, and selective coding, to construct a theory grounded in empirical data.
Results: The findings reveal that students’ understanding of 3D volume is still in
a transitional stage, moving from concrete experiences to formal mathematical
representations. Familiar local contexts alone were found insufficient to bridge
spatial understanding without adequate visual and pedagogical support. Major
obstacles included conceptual misconceptions, procedural errors, limited
visualization skills, and reliance on teacher assistance.

Conclusion: The core category, “multiple representations as a bridge to spatial
understanding,” underscores the importance of integrating concrete
visualization, verbal description, and mathematical symbolism in geometry
instruction. This study suggests that teachers should design instructional
strategies that systematically combine visual media, concrete manipulatives, and
verbal approaches. Such integration is crucial to ensure that local contexts
effectively serve as a bridge between real-world experiences and abstract
mathematical understanding.

To cite this article: Wahyuningrum, E., Sudirman., Nieto, C, A, R. (2025). Geometry from Coastal Life: a grounded theory
of primary students’ 3D geometry understanding in Northern Coastal West Java. Journal of
Advanced Sciences and Mathematics Education, 5(2), 281-299

INTRODUCTION

Three-dimensional (3D) geometry is recognized as a core component of mathematical literacy
because it equips students with the ability to visualize, analyze, and represent spatial structures.
Despite its importance, many elementary school students still face significant difficulties in

transitioning from concrete experiences to abstract reasoning, especially when dealing with concepts

of volume and unit conversion (Tian et al. 2024; Ocal & Halmatov. 2021). This challenge becomes
even more urgent in the context of today’s education systems that emphasize higher-order thinking
skills. A lack of conceptual understanding in geometry at early stages can hinder future achievement
in mathematics and science-related fields. Thus, investigating how students develop spatial
reasoning in authentic contexts is essential for improving both pedagogy and curriculum design.
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The urgency of this research is further highlighted by the prevalence of misconceptions and
procedural errors when students solve geometry problems. For example, studies show that students
often confuse area with volume, misapply formulas, or rely excessively on rote memorization instead
of conceptual reasoning (Alzubi et al. 2025; Sudirman et al. 2023). These recurring difficulties
suggest that conventional teaching strategies focusing only on textbook-based or symbolic
instruction are insufficient. Instead, there is a pressing need to adopt approaches that integrate local
contexts, visual aids, and manipulative tools. By situating geometry within students’ cultural and
environmental experiences, educators can potentially bridge the gap between informal knowledge
and formal mathematics.

Moreover, the context of coastal life presents a compelling lens for studying 3D geometry
learning. Coastal communities are rich in real-world structures such as boats, fish boxes, and
observation towers that embody geometric principles. However, research reveals that familiar
contexts do not always guarantee meaningful abstraction if not supported with scaffolding strategies
(Rau, 2017; Widodo et al., 2017). This underscores the need for empirical studies that explore how
contextual problems influence cognitive transitions in geometry learning. By focusing on students in
northern coastal West Java, this research addresses both theoretical significance in cognitive
development and practical relevance for ethnomathematics-based education.

This study is designed to explore the cognitive processes of elementary students in
understanding 3D geometry through grounded theory. Unlike predetermined instructional models,
grounded theory allows concepts to emerge directly from students’ interactions with tasks and
contexts. Such an approach provides a more authentic understanding of how learners engage with
problems, apply strategies, and encounter obstacles. The rationale lies in generating a substantive
theory that reflects the dynamics of cognitive transition (from concrete experiences to symbolic
representation) within a specific cultural context. This contributes not only to mathematics
education but also to broader discussions on contextual learning and ethnomathematics.

Recent studies have emphasized the role of multimodal and contextual strategies in improving
students’ geometric reasoning. For example, Alsanousi & Prabhu (2025) developed multimodal
assessment models to track cognitive proficiency, highlighting the need to integrate behavioral and
visual metrics in learning. Similarly, Rieder & Aschenbrenner (2024) showed how contextual
information displays in learning environments foster spatial transitions in problem solving.
Fiorentino et al. (2023) investigated interdisciplinary mathematics teacher training and found that
multimodal approaches improve pre-service teachers’ understanding. Ramos et al. (2021)
highlighted how contextual predictors influence learning trajectories of high-ability students,
reinforcing the importance of context in shaping mathematical reasoning. These studies collectively
underscore that contextual and multimodal approaches are increasingly central to fostering
geometry learning outcomes. Other relevant works have examined transitions in reasoning
processes. Mendl et al. (2024) reported how students struggle with voluntary task switching without
contextual cues. Kelber et al. (2024) explored how cognitive control adjustments transfer between
learners, stressing the role of guided interaction. Halliburton et al. (2024) examined how self-
regulation develops under stress and its implications for sustained learning. Yang et al. (2023)
highlighted teacher agency as a mediator in implementing innovative pedagogies, while Khurshid et
al. (2023) synthesized the effects of pedagogical interventions at university level. Taken together,
these ten studies illustrate that the success of contextual and representational learning depends not
only on the presence of local context but also on the cognitive, motivational, and instructional
scaffolds that support abstraction.

Despite growing interest in contextual and multimodal strategies, few studies have examined
how elementary students in developing countries cognitively transition from concrete to symbolic
reasoning within authentic cultural contexts. Most prior works have focused on either advanced
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learners or pre-service teachers, leaving a gap in understanding how younger students engage with
geometry in their local environments. Moreover, while ethnomathematics often assumes that local
contexts automatically enhance learning, evidence suggests that without structured scaffolding,
familiar contexts can even create confusion. Therefore, a research gap exists in exploring the
intersection of grounded theory, cultural context, and elementary geometry learning.

The purpose of this study is to investigate how elementary students in coastal areas develop
an understanding of 3D geometry concepts, particularly volume, when exposed to contextual
problems drawn from their daily environment. Specifically, this research aims to identify students’
cognitive processes, the obstacles they encounter, and the conditions under which contextual
problems succeed or fail to support abstraction. By doing so, the study intends to formulate a
grounded theory that explains the transition from concrete experiences to symbolic reasoning.
Ultimately, the research contributes to the theoretical discourse on cognitive development while
offering practical recommendations for teachers and curriculum designers seeking to implement
culturally relevant yet cognitively effective geometry instruction.

METHOD

Research Design

This study employed a qualitative approach with a grounded theory (GT) design. Grounded
theory was chosen because it allows for the generation of substantive theories that emerge directly
from participants’ lived experiences rather than being imposed by pre-existing frameworks (Lim,
2025; Urcia, 2021). Such a design is well-suited to investigating the process through which
elementary students transition from concrete experiences to formal reasoning in three-dimensional
(3D) geometry. By focusing on students’ verbal explanations, problem-solving strategies, and
representational practices, this research captures the complexity of cognitive development. The GT
framework was implemented in three systematic phases: open coding, axial coding, and selective
coding. Open coding involved identifying initial concepts from raw interview and test data, axial
coding organized these concepts into interrelated categories, and selective coding identified the core
category representing the central phenomenon. This design ensures that theoretical insights remain
closely grounded in empirical evidence (Makri & Neely, 2021). Moreover, adopting grounded theory
aligns with the rationale of studying cognitive transition in authentic contexts, as it prioritizes
inductive discovery of processes.
Participants

The participants of this study consisted of 26 elementary students from grades five and six in
a coastal school in Indramayu Regency, West Java, Indonesia. The sample included 20 female
students and 6 male students, with ages ranging between 11 and 12 years. The selection of
participants was based on voluntary involvement, with informed consent obtained from parents and
school administrators. Participants represented diverse academic backgrounds, ensuring a range of
ability levels to capture heterogeneity in geometric understanding. Ethical approval was secured
from the school authority, and all procedures complied with confidentiality and anonymity
principles. Such diversity was critical to the grounded theory approach, which seeks to identify both
common and divergent thinking patterns. This variation in participants allowed the research to
highlight the challenges faced by both high-performing and low-performing students in solving
contextual 3D geometry problems.

Table 1. Profile of Participants by Gender and Age

Gender Age 11 Age 12 Total

Female 12 8 20
Male 4 2 6
Total 16 10 26
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Table 1 shows the distribution of participants by gender and age. Of the 26 students, the
majority were female (20 students) and the remainder were male (6 students). Participants were
divided between 11 years old (16 students) and 12 years old (10 students). This distribution
emphasizes sample diversity, which is important in grounded theory-based research. By varying age
and gender, the study was able to capture the diversity of thinking processes and problem-solving
strategies in three-dimensional geometry. This heterogeneity also strengthens the study's internal
validity, as the results obtained do not only represent a specific, homogeneous group but also
illustrate broader thinking patterns. Furthermore, differences in gender and age can be factors that
influence students' learning styles, cognitive representations, and how they connect real-world
contexts with mathematical symbols (Cui et al. 2024; Wei et al. 2025).

Instruments

Two instruments were used to collect data: an open-ended 3D geometry test and semi-
structured interviews. The geometry test was designed to assess students’ ability to calculate the
volume of geometric solids such as rectangular prisms, cubes, triangular prisms, and square
pyramids. Each test item was contextualized in coastal life settings, such as fish boxes, salt containers,
and observation towers, to reflect authentic real-world problems. The test emphasized not only
procedural skills but also conceptual reasoning and the ability to connect mathematical formulas
with real-life scenarios. Semi-structured interviews were then conducted with selected students
representing different achievement levels. Interview questions explored students’ reasoning
processes, strategies, and obstacles encountered when solving geometry tasks. Combining test and
interview data ensured methodological triangulation, which enhanced the validity and
trustworthiness of findings (Arias Valencia 2022; Khalil et al. 2024). The instruments were validated
through expert review and pilot testing with a small group of students before the main study.

Data Analysis Plan

Data analysis followed the procedures of grounded theory methodology. First, open coding was
conducted by carefully examining test responses and interview transcripts line by line, allowing
emergent concepts to be identified without prior assumptions. These initial codes were then grouped
into categories during axial coding, which established relationships between student errors,
strategies, and conceptual understanding. In the final stage, selective coding identified a single core
category that explained the central process of cognitive transition from concrete to abstract
reasoning. The iterative process of coding involved constant comparison, memo writing, and
theoretical sampling to refine categories. Throughout the analysis, peer debriefing and intercoder
reliability checks were conducted to enhance credibility and minimize researcher bias. The GT
process also integrated both qualitative insights and descriptive statistics, providing a
comprehensive picture of students’ performance. The framework of the GT analysis applied in this
study is illustrated below.
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Figure 1. GT Analysis Framework
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Figure 1 illustrates the grounded theory analysis framework used in this study. The process
begins with open coding, where raw data from tests and interviews are analyzed line by line to
generate initial codes. The next stage is axial coding, which groups initial codes into broader
categories based on causal relationships, conditions, and consequences. Finally, selective coding is
conducted to identify core categories that describe key patterns in students’ cognitive processes. For
example, the core category that emerged in this study is the transition from concrete experience to
formal reasoning. This figure is important because it demonstrates that the analysis is not only
descriptive but also theoretical, resulting in a model that can explain learning phenomena in depth.
This visualization helps readers understand how complex qualitative data are processed into
substantive theory grounded in students' real-life experiences (Lim, 2025; Urcia, 2021: Makri &
Neely, 2021).

RESULTS AND DISCUSSION

Results

The implementation of geometry learning in a primary school located in a coastal area was
carried out using a structured, active, and contextual learning approach. The instructional process
was designed in three main phases: before class, in class, and after class. This approach aims to
support student engagement and build conceptual understanding by connecting geometric concepts
with real-life contexts drawn from the students’ everyday environment.

Figure 2. Giving instructions

In the before class phase, students studied introductory geometry material independently at
home using simple digital media provided by the teacher (See Figure 2). This media included short
videos, illustrated explanations, and interactive visual materials introducing basic geometric shapes
and properties. The content was contextualized to reflect local coastal life, such as fishing nets, stilt
houses, and boat structures. This phase served as a preliminary exposure to help students grasp
fundamental ideas before engaging in classroom activities.

The in-class phase served as the core learning session, where the teacher facilitated a series of
active and collaborative activities. Students worked in groups to engage in discussions, explore
geometric objects using concrete materials, and solve problems rooted in local contexts. These
classroom tasks encouraged students to apply geometric reasoning in identifying shapes, measuring
dimensions, and understanding spatial relationships found in their surroundings. The teacher
functioned as a facilitator, guiding students through discovery-based learning that emphasized
relevance and application.
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Figure 3. Construction Process Through Training

In the after-class phase, students were assigned enrichment tasks to strengthen their
conceptual understanding. These tasks encouraged students to apply geometry in real-life situations,
such as measuring and classifying objects around their homes based on geometric properties, or
creating simple sketches of traditional coastal structures. This phase served as both reinforcement
and reflection, allowing students to internalize and extend what they had learned in class.

Throughout the implementation, the researcher conducted observations focusing on student
interactions, engagement during group discussions, and their ability to apply geometric concepts in
practical situations. The findings indicated that this structured, contextual approach fostered active
participation, improved conceptual comprehension, and encouraged students to connect
mathematics meaningfully with their daily lives in a coastal environment.

Tabel 2. Descriptive Statistics

Statistic Value
Maximum Value 75.00
Minimum Value 25.00

Mean 50.67
Standard Deviation 12.40

The descriptive statistical analysis (See Table 2) of the dataset reveals a mean score of
approximately 50.67, indicating that the average performance of the individuals in the dataset is
slightly above the midpoint of the observed values. The maximum score is 75.00, while the minimum
score is 25.00, suggesting a wide range of variability among the data. This spread implies the
presence of both high and low-performing individuals within the group. A relatively high mean close
to the center of the range shows that most data points are moderately distributed rather than being
heavily skewed toward one end.

Furthermore, the standard deviation is 12.40, which signifies a moderate level of dispersion
around the mean. This means that while the average performance is around 50.67, individual scores
tend to deviate from the mean by about 12.40 points on average. Such a spread suggests a
heterogeneous group, where performance levels vary considerably. This variation can be useful for
identifying different learner needs or grouping individuals for targeted interventions based on their
performance bands.

Average Percentage Score per Question
60%

54,8%

50%

40%

30%

20%

0%

No 1 No 2 No 3 No 4

Figure 4. Average Percentage Score Per Question
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The assessment results based on the average percentage scores for each question reveal that
students performed most consistently on Question 1, with an average score of 54.6%. This indicates
a relatively good understanding of the material covered in this question. Questions 3 and 4 follow
with 48.8% and 51.2% respectively, suggesting a moderate level of comprehension. Meanwhile,
Question 2 shows the lowest average score at 47.3%, indicating that students may have found this
particular item more challenging or that it addressed a concept that requires further reinforcement.

The variation in percentage scores across the four questions reflects differing levels of student
mastery. It may be beneficial for educators to review the instructional strategies or materials
associated with Question 2 to identify possible gaps in understanding. Additionally, focusing on
targeted interventions for questions with lower performance could help in achieving a more
balanced and thorough comprehension of the content across all assessed areas.

Students' Thinking Process and Obstacles in Solving Question Number 1

Soal 1

Seorang nelayan memiiliki kotak penyimpanan ikan berbentuk balok dengan ukuran panjang
120 cm, lebar 80 cm, dan tinggi o0 cm. Notak ini digunakan untuk menyimpan hasil
tangkapan ikan sebelum dijual ke pasar. Berapa liter volume maksimum kotak penyimpanan

ikan tersebut? (Catatan: 1 liter = 1.000 cm?)

A fisherman has a fish storage box in the shape
of a rectangular prism with a length of 120 cm, a
width of 80 cm, and a height of 60 cm. This box
is used to store the fish he catches before selling
them at the market. What is the maximum
capacity of the fish storage box in liters? (Note:
1 liter = 1,000 cm?)

Code 8:
Confuse area and volume

| Guess without célculating I

Code 1: i
Mention dimensions without meaning

Sapan . W
Code 2: i Category 1

Multiply only two dimensions :I (Understanding context)

Code 3: i
Use volume formula correctly i
Code 4: } - Category 2
Omit unit of measure : (Volume formula use)

Code 6: Category 3

Knows conversion, doesn't apply : (Unit conversion skills)

Code 7:
Convert cm? to liters

Code 9: Category 4

g
Code 10:
Incorrect dimensional drawing

Open Coding Axial Coding

Misunderstand prism shape * (Visual representation issues)

Selective Coding

Figure 5. Students’ Thinking Process in Solving Question Number 1

The Figure 5 illustrates the process of qualitative data analysis using the GT approach,
specifically in the context of elementary students' understanding of 3D geometry in coastal areas.
The diagram begins with interview transcripts, which are then broken down into several open codes.
Each open code represents a specific student statement or behavior, such as "Multiply only two
dimensions" or "Convert cm? to liters.” This open coding process is conducted inductively without
predefined categories, aiming to capture the diversity of student responses in a detailed and

authentic manner.

The next stage is axial coding, where related open codes are grouped into broader categories
based on emerging patterns, causal relationships, conditions, or consequences. For instance, codes
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like "Knows conversion, doesn't apply" and "Convert cm? to liters" are associated with the category
"Unit conversion skills." This step serves to construct a conceptual structure from dispersed data,
allowing a deeper understanding of the difficulties students encounter to emerge systematically.

The final phase is selective coding, which involves identifying a core category that encapsulates
the central patterns of students’ thinking in understanding the concept of 3D volume. In the diagram,
all axial categories converge toward a single core idea: "Concrete to formal reasoning.” This core
category indicates that students are undergoing a process of transforming concrete experiences (e.g.,
observing a fisherman'’s storage box) into formal mathematical representations (e.g., calculating
volume using formulas and unit conversions). This process reflects students’ cognitive dynamics in
developing spatial understanding through contextual and visual experiences.

The core category "Concrete to formal reasoning” encapsulates the essential transition in
students’ cognitive development, wherein they move from tangible, everyday experiences to abstract
mathematical thinking. This transformation is crucial in learning geometry, particularly in
understanding three-dimensional concepts such as volume. In the context of the study, students
begin by relating to real-life objects—like a fisherman'’s fish box—through sensory or experiential
knowledge, which then gradually evolves into the application of formal procedures, including the use
of geometric formulas and unit conversions. This shift highlights not only the integration of
contextual understanding with mathematical reasoning but also underscores the importance of
instructional approaches that scaffold learners from familiar, concrete representations to more
symbolic, formal abstractions.

Code 8:
Don’t relate box to formula

Code 5:
Unfamiliar with standard units

Code 1:
Confused by cm? to liter
Code 2: Category 1
Misunderstand volume formula (Conceptual difficulties)

Code 3:
Unaware that liter is volume

L“\——L
Code 4: Category 2
Use local size terms (Unit conversion obstacles)

Code 6: Category 3
Struggle with formal language (Language and context barriers)
—

Code 7:
Don’t understand ‘'maximum volume*

Code 9: Category 4
Struggle with word problems (Representation and format issues)
[ =

Code 10:
Only used to numeric problems

Open Coding Axial Coding Selective Coding

Figure 6. Obstacles in Solving Question Number 1

The axial coding section in the figure illustrates how students’ difficulties in understanding 3D
geometry are conceptually organized into four major categories. Category 1: Conceptual difficulties
captures students' misunderstandings about the concept of volume, such as misapplying the formula
or failing to recognize that a liter is a unit of volume. This reveals a disconnect between students’
everyday experiences with physical objects and their formal mathematical knowledge. Meanwhile,
Category 2: Unit conversion obstacles reflects challenges students face when dealing with standard
units, especially converting between cubic centimetres and liters. The use of local, non-standard size
references—like "a bucket" or "a basin"—further emphasizes the lack of familiarity with metric units
in daily discourse.

Category 3: Language and context barriers highlights students’ struggles with the linguistic
complexity of math problems. Phrases such as “maximum volume” or formal question structures can
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obscure meaning for learners who are more accustomed to informal or local expressions, making it
harder to access the mathematical task embedded in the context. Lastly, Category 4: Representation
and format issues addresses students' difficulties in interpreting and solving word problems,
particularly when they are more familiar with numerical drills than with verbal problem scenarios.
Altogether, these axial categories point to a core issue “Context fails as bridge” suggesting that,
despite being drawn from students’ real-life environments, the contextualization of problems often
does not effectively support their transition from everyday experiences to formal mathematical
reasoning.

The core category “Context fails as bridge” signifies a critical disconnect between students’
real-life experiences and their ability to engage with formal mathematical reasoning. Although the
problem scenario is drawn from a familiar coastal context (such as a fisherman’s fish storage box)
the formal presentation of the task, including symbolic language, unit conversions, and abstract
representations, often prevents students from recognizing the mathematical relevance of that
context. Instead of facilitating understanding, the context becomes a barrier when it is not
meaningfully connected to students’ prior knowledge or everyday practices. This finding
underscores the importance of designing instructional strategies that not only embed real-world
contexts but also scaffold students’ transition from informal, intuitive understanding to structured
mathematical thinking.

Students' Thinking Process and Obstacles in Solving Question Number 2

Soal 2 . . .
oal In a fishing village, salt farmers store their
Di desa nelayan, para petani garam menyimpan garam - hasil panennyadalam wadzh- - harvested salt in containers shaped like cubes,
) _ i 5 each with an edge length of 1 meter. If a farmer
berbentuk kubus dengan ukuran panjang rusuk 1 meter. Jika scorang petar memilki S e containers, all of which are completely
wadah garam yang semuanya terisi penuh. berapa total volume garam yang dapat filled, whqt is the total Vo.lume of salt that can
be stored in all the containers? (Note: 1 m* =
disimpan dalam semua wadah tersebut? 1,000 liters)
(Catatan; 1 m*= 1.000 liier)
Code 1:

Omnly count cubes

Code 2:
Forget cube wvolume

Code 3: Category 1
Know wvolume formula (Volume concept)

Code 6:
MMultiply edge three times

Code 4:
Don't convert m*
Code 5: \_
Conwvert m?* to liters
Category 2
(Unit conwversion skills)
Code 13:
Use liter instinctively
Code 7:
Ignore S containers
T
Code 8: Category 3
MMultiply without meaning (Procedural strategies)
-
Code 9:
Guess the answer

Code 10: Cat ory &
Draw cube inaccuratelsy (visual representation)

Code 11:
WVisualize 3D structure

Code 12:
Relate to salt sacks
Category S
{(Contextual connection)
Code 14:
Confused with area /

Code 15:
MNeed teacher hints

Figure 7. Students' Thinking Process in Solving Question Number 2

The figure illustrates a qualitative data analysis process based on the GT approach, focusing on
elementary students’ responses from a coastal area in Indramayu when solving a 3D geometry
problem involving the volume of a cube in the context of salt farming. Fifteen open codes were
identified from student interview transcripts, reflecting diverse behaviors and thought patterns
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during problem-solving. For instance, codes such as “Multiply edge three times” and “Only count
cubes” indicate students’ basic understanding of shape and volume, while “Don’t convert m*” and “Use
liter instinctively” reveal challenges in understanding and applying unit conversions. Some students
also exhibited conceptual confusion like “Confused with area” or required teacher assistance (“Need
teacher hints”), signalling that their thinking processes remain largely concrete and have yet to fully
transition to abstract reasoning.

Through axial coding, these open codes were grouped into five broader categories: volume
concept understanding, unit conversion skills, procedural strategies, visual representation, and
contextual connection. These categories offer a comprehensive view of the types of difficulties and
strategies students employed. Ultimately, all axial categories converge on one core category: “From
intuitive to formal reasoning.” This core concept highlights that students’ understanding develops
from intuitive approaches grounded in real-life experiences toward formal reasoning based on
mathematical concepts and procedures. The diagram emphasizes that contextual learning can serve
as a crucial bridge for helping students build spatial reasoning and abstract thinking in mathematics,
provided it is supported by appropriate scaffolding and the integration of multiple representations.

{ Open Coding ] ( Axial Coding J

- 1 —--| Forget cube formula |--: S—
i

L”“*"‘| Confused with sz? |"~*** [—\
] b 1 —————
i > Category i

'| Don’t convert to liter |——— ——

Don't know edge term |

|
e ———»| Don’t know ‘volume’ |——-—--
y

,| Focus on ‘5’ |, | At
e (Unit conversion’ | |

b i | Confused by long text !

| ! »_é__» Language and i
i | Skip to conclusi ¢ i literacy barriers |
fff e It | {
] H ; H
L___i [ Can't visualize cube | ib | Lack ofvi.sual iy |
| e q representation |

R . .| Can't visi lize cube I

Core Category Core Category

Figure 8. Students’ Obstacles in Solving Question Number 2

Diervins Imucsepls
ol oluervatien
|
s |

The diagram visualizes the qualitative data analysis of elementary students’ 3D geometry
thinking barriers through the lens of grounded theory, specifically when solving a problem involving
volume of cube containers used by salt farmers in a coastal village. The open coding phase yielded
fifteen distinct student responses and behaviors, such as “Forget cube formula,” “Ignore ‘liter’ unit,”
and “No cube image in mind.” These responses reflect fragmented or partial understanding,
indicating how students often rely on informal knowledge, struggle with formal mathematical
expressions, or are disconnected from the expected geometric reasoning. These open codes are
clustered into five axial categories that represent broader themes of difficulty: conceptual
misunderstanding, unit conversion issues, language and literacy barriers, lack of visual
representation, and weak connections to real-world experience.

Each axial category contributes to the emergence of a core category: “Context does not support
abstraction.” This central theme captures the insight that, although the question is set in a familiar
real-life setting, such as salt farming, the formal structure and mathematical demands of the task fail
to bridge the gap between students’ daily experiences and abstract geometric reasoning. Students
may recognize the context but do not intuitively translate it into formal operations like using the
volume formula or converting cubic meters to liters. The figure highlights the urgent need to redesign
word problems to be more culturally and cognitively accessible, incorporating contextual visuals,
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everyday language, and ethnomathematical approaches that truly link students' lived environments
with formal mathematics learning.

Students' Thinking Process and Obstacles in Solving Question Number 3

Soal 3 . .

Untuk mciimdung: alar taanglapanny o dari panas TO prOteCt hlS ﬁShlng gear from the sun, a ﬁShemlan
matahar. scorang ncelayan maembuat tenda bullds a tent in the Shape Ofa' triangular prism on tOp
berbentuk  prisma scgitiga di atas  perahunsya of his boat. The triangular base of the tent has a base
Alas scgitiga tenda memiliki panjang 1.5 mcter length Of 15 meters and a helght Ofl meter, Whlle the
dan tingei 1 ometer. sedangkan panjanes tenda length of the tent (aligned with the boat) is 2 meters.
(bagian moemanjange  perabu) adalabh 2 ancraer What iS the Volume ofthe Space inside the tel’lt?
Boerapa volume ruang yang ada di dalam tenda

tersebut?
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Figure 9. Thinking Process in Solving Question Number 3

The diagram illustrates the grounded theory coding process applied to understand elementary
students’ thinking in solving a 3D geometry problem involving the volume of a triangular prism. It
begins with open coding, which identifies specific observable student responses and behaviors from
interview transcripts, such as “Confuses base and height” or “Multiplies all dimensions.” These codes
represent the initial breakdown of qualitative data into meaningful units. From these, patterns and
themes begin to emerge, capturing both conceptual misunderstandings and procedural errors
related to geometric volume calculation, especially within the context of real-life, culturally relevant
problems like a fisherman’s tent.

Through axial coding, the open codes are organized into broader conceptual categories such as
“Conceptual Misunderstanding,” “Procedural Challenges,” “Contextual Integration,” and “Visual
Reasoning Barriers.” These categories reflect the interconnected challenges students’ face, such as
distinguishing between surface and volume or correctly identifying the base and height of a triangle.
All axial categories are eventually synthesized into a single core category—*“Shifting from Concrete
to Symbolic Reasoning”—which encapsulates the overarching cognitive transformation needed for
students to translate tangible, everyday experiences into formal mathematical understanding. This
model emphasizes the importance of instructional strategies that bridge concrete experiences with
abstract representations to enhance spatial reasoning.
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Figure 10. Obstacles in Solving Question Number 3

The diagram illustrates the grounded theory coding process used to explore elementary
students’ thinking when solving a 3D geometry problem involving the volume of a triangular prism.
The open coding stage identified specific student responses and difficulties, such as “Ignore triangle
base,” “Use rectangle formula,” and “Forget to halve base area.” These individual codes represent the
students’ initial interpretations and reasoning patterns. During axial coding, these open codes were
grouped into broader thematic categories such as “Understanding triangle properties,” “Volume
formula misconceptions,” and “Procedural application errors.” This stage helped reveal how different
cognitive obstacles are interrelated and form consistent categories of difficulty in spatial reasoning.

In the final selective coding phase, these axial categories were synthesized into a core category:
“Misalignment of shape and formula.” This core category represents the central challenge many
students face—bridging their understanding of the triangular prism’s structure with the appropriate
mathematical operations needed to calculate its volume. Despite contextual cues from the problem
(e.g., “tent” on a “boat”), students often defaulted to familiar formulas unrelated to the triangular
prism, indicating a gap between visual-spatial interpretation and symbolic mathematical reasoning.
The diagram emphasizes how grounded theory helps reveal layered thinking processes and cognitive
transitions in geometry learning.

Students' Thinking Process and Obstacles in Solving Question Number 4

On the coast, there is a fisherman’s observation tower
in the shape of a square pyramid, which is used to
monitor sea conditions. The base of the tower is a
square with side lengths of 4 meters, and the height of
the tower is 9 meters. What is the volume of the space
inside the observation tower?

Soal 4

Di pesisir pantai. terdapat menara pantau  nelayan

berbentuk limas segi empat vang digunakan untuk
mengawasi kondisi laut. Alas menara berbentuk persegi.

dengan panjang sisi 4 meter. dan tinggi menara 9 meter.

Berapa volume ruang dalam menara pantau tersebut?
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Figure 11. Students' Thinking Process in Solving Question Number 4

The diagram visualizes the process of qualitative data analysis using a Grounded Theory
approach, specifically applied to the ways elementary students in coastal Indramayu reason through
a geometry problem involving a square pyramid. The process begins with 15 open codes, which
represent direct student responses or observable thinking patterns—for example, “Only square
visible,” “Don’t write formula,” and “Guess base area.” These codes are distilled from students' verbal
explanations or written work as they attempt to solve a volume problem involving a square pyramid.
The open codes are grouped into five axial codes, such as Formula application errors, Misconception
of base area, and Contextual visualization issues. These categories reflect shared difficulties across
multiple student responses, capturing both procedural and conceptual obstacles.

These axial codes converge into two selective (core) codes: From object to formula and
Contextual shape abstraction. The first selective code highlights the cognitive transition from
perceiving a real-world object (a watchtower) to applying an abstract geometric formula. The second
captures the struggle some students face in mentally reconstructing a 3D pyramid structure from
verbal descriptions alone. Together, the categories point to a critical insight: while students may be
familiar with the physical context (the tower), they often fail to connect that familiarity to formal
geometric understanding. This suggests that real-world contexts do not automatically support
abstraction unless guided by instruction that bridges visual familiarity with mathematical reasoning.
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Figure 12. Obstacles in Solving Question Number 4
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The diagram visually presents the qualitative coding process derived from elementary students’
responses in solving a 3D geometry problem involving a square pyramid structure. The open coding
phase reveals 15 distinct cognitive and conceptual obstacles, such as forgetting to divide by 3,
misidentifying the base shape, and assuming the height is a side of the pyramid. These codes are then
systematically grouped into five axial categories: Formula application errors, Misconception of base
area, Shape recognition difficulties, Unit and dimensional confusion, and need for contextual support.
Each category consolidates recurring errors, providing a clearer picture of the patterns in student
thinking and the specific sources of difficulty.

These axial categories are then connected to two overarching selective codes: From object to
formula and Contextual shape abstraction. The first selective code underscores the central cognitive
transition required—students must move from perceiving the real-world object (a square pyramid)
to formulating a mathematical representation using the volume formula. The second highlights the
challenge of abstracting geometrical shapes from familiar contexts like an observation tower.
Together, they reveal that while students are exposed to real-world structures, transforming these
into formal mathematical reasoning is still a major hurdle, especially without sufficient visual or
instructional scaffolds.

Discussion

The findings of this study indicate that elementary students’ thinking processes in
understanding 3D geometry in coastal areas are marked by an incomplete cognitive transition from
concrete experiences to formal mathematical representations. Although the problems were
presented using familiar local contexts—such as a fisherman'’s fish box, salt containers, tents on
boats, and observation towers—students frequently failed to associate these real-world objects with
the symbolic concept of volume. Many students demonstrated intuitive understanding of these
objects but made errors or showed uncertainty in applying mathematical formulas, performing unit
conversions, and identifying geometric structures. This cognitive transition was hindered by
conceptual misconceptions, procedural mistakes, and an overreliance on teacher assistance or
practical experience alone. Core categories such as “Concrete to formal reasoning” and “From intuitive
to formal reasoning” highlight the urgent need for instructional strategies that can systematically
bridge real-world experience with abstract mathematical reasoning.

Furthermore, although local contexts were used as pedagogical tools, they were not always
effective as cognitive bridges, as reflected in the core categories “Context fails as bridge” and “Context
does not support abstraction.” Students often struggled to benefit from contextual references due to
linguistic misinterpretations, lack of visual support, and failure to link everyday experiences with
formal geometric concepts and formulas. These barriers were consistently evident across different
tasks—for example, misidentifying the base of a triangular prism, mistaking a slant edge as the height
of a pyramid, or using non-standard measurement units such as "bucket" or "basin." These findings
underscore the necessity of designing culturally contextualized problems accompanied by explicit
visualizations, scaffolded instruction, and an ethnomathematical approach that meaningfully
integrates students’ local experiences into formal mathematical understanding.

These findings align with the work of Downton & Livy (2022), Sudirman et al. (2022), and Tan-
sisman and Aksu (2016), who reported that many students struggle to understand volume concepts
due to limitations in spatial representation and their comprehension of geometric structures. In this
study, students tended to rely on intuitive approaches grounded in real-life experience but
encountered difficulties when required to apply formal formulas or perform unit conversions. Their
intuitive familiarity with the physical object did not necessarily translate into accurate symbolic or
procedural responses, especially in solving volume problems.
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Moreover, Desai et al. (2021) emphasized the importance of representational support in
helping students develop deeper geometric understanding. When students lack sufficient visual or
concrete models to comprehend the structure of shapes such as triangular prisms or square
pyramids, they often apply incorrect formulas, forget to divide the base area, or confuse critical
attributes such as height and base. This aligns with the findings of Sudirman et al. (2022; 2023), who
noted that in the absence of visual aids and systematic teacher intervention, students tend to rely on
trial-and-error strategies or everyday intuition, which do not always align with formal geometric
principles. Consequently, these findings reinforce the necessity of a learning approach that integrates
real-world contexts, visual representation, and mathematical reasoning in a coherent and synergistic
manner.

This is consistent with van Hiele’s (2002) theory, which posits that students progress through
distinct levels of geometric thinking, and that many elementary school students remain in the visual
or descriptive stage, lacking the deductive reasoning skills needed to analyze 3D shapes (Alex &
Mammen, 2018). As demonstrated in the core categories “Concrete to formal reasoning” and “From
intuitive to formal reasoning” (Widodo et al. 2017), students in this study had not yet reached the
level of formal mastery, as they were unable to translate real-world shapes into symbolic
mathematical operations.

Theoretically, these findings are supported by Piaget’s cognitive development theory,
particularly the concrete operational stage, in which children understand mathematical concepts
through manipulation of tangible objects but still struggle with abstract reasoning in the absence of
visual or symbolic support. In this sense, real-world contexts are important, but must be
accompanied by visual or concrete media that help children construct accurate spatial imagery. The
findings also align with Vygotsky’s theory of the Zone of Proximal Development (ZPD), which
emphasizes thatlearners require scaffolding from teachers to move from intuitive knowledge toward
formal understanding (Margolis, 2020; Rahman, 2024). In this study, many students were only able
to solve problems after receiving prompts from the teacher, underscoring the critical role of active
instructional support in bridging their cognitive development.

In other words, this study enriches the literature on contextual geometry education by
demonstrating that the success of context-based approaches is not automatic. Context must be
pedagogically structured to match students' cognitive developmental levels, supported by
appropriate visual representations, and delivered using accessible language. This research cautions
that without explicit connections between context and formal mathematical structure, students may
become even more confused. Therefore, the findings advocate for an instructional design that
integrates local context, multimodal representations, and the geometric thinking stages as described
by van Hiele, ensuring that learning is both effective and meaningful.

Implications
The findings of this study carry important implications for mathematics education, particularly

in designing geometry instruction that bridges real-world contexts and abstract reasoning. For
curriculum developers, the study emphasizes that contextualization must be complemented with
scaffolding strategies that explicitly guide students from intuitive knowledge toward symbolic
understanding. Teachers should not only rely on students’ familiarity with objects such as fish boxes
or salt containers but also integrate visual representations and manipulatives to make the connection
to formal formulas more explicit. Furthermore, the results support theoretical perspectives of Piaget
and Vygotsky, highlighting the necessity of developmentally appropriate tasks and scaffolding in the
Zone of Proximal Development (Margolis, 2020; Rahman, 2024). These implications also extend to
the development of ethnomathematics-based teaching materials, which must be carefully structured
to ensure cultural contexts enhance rather than hinder abstraction.

Journal of Advanced Sciences and Mathematics Education | 295



Journal of Advanced Sciences and Mathematics Education
Wahyuningrum et al | Geometry from coastal life: A grounded theory of ......

Limitations
Despite its contributions, this study has several limitations that must be acknowledged. First,

the research was conducted with a relatively small sample of 26 students from a single coastal school,
which may limit the generalizability of the findings. Second, the study focused exclusively on
elementary school students aged 11-12, leaving open the question of whether similar cognitive
processes occur at other age levels. Third, while grounded theory provided rich insights, the reliance
on qualitative data means that quantitative validation of the emergent categories remains to be
explored. Fourth, the cultural context of coastal life may not fully represent other local or urban
contexts where different experiences shape students’ reasoning. Finally, the interviews and
observations were limited to a short time frame, which may not capture longitudinal changes in
students’ cognitive development. These limitations suggest caution in overgeneralizing the results,
while still recognizing their value as exploratory contributions.

Suggestions
Future research should expand the scope by including larger and more diverse samples across

multiple regions and cultural settings to test the robustness of the emergent theory. Longitudinal
studies are recommended to capture how students’ transitions from concrete to formal reasoning
evolve over time and with increasing instructional support. Additionally, integrating mixed-method
designs would allow triangulation between qualitative findings and quantitative measures of spatial
reasoning, providing stronger evidence for theory building. The use of technology such as augmented
reality or digital manipulatives could also be investigated as tools to enhance the transition from
context to abstraction, aligning with current trends in digital education. Collaboration with teachers
is essential to co-design culturally relevant yet cognitively effective learning materials that address
the obstacles identified in this study. By pursuing these directions, future research can build on the
foundation established here to develop more comprehensive models of geometry learning that are
both contextually meaningful and pedagogically sound.

CONCLUSION

This study shows that elementary students’ understanding of volume in three-dimensional
geometry is still transitional, with persistent misconceptions, procedural errors, and limited spatial
visualization. Although tasks were presented in familiar local contexts, many students could not
connect real-life objects with symbolic mathematical concepts, indicating that context alone is
insufficient without systematic scaffolding. The findings emphasize the need for intentional
pedagogy: contextual problems should align with students’ developmental stages, supported by
visual aids, manipulatives, and guided instruction. Theoretically, the results affirm Piaget’s and
Vygotsky’s perspectives while critiquing the assumption in ethnomathematics that local context
automatically enhances formal understanding. Practically, this study encourages teachers and
curriculum designers to develop culturally relevant yet cognitively structured learning materials that
strengthen students’ spatial and symbolic literacy.
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