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 Background: Although three-dimensional (3D) geometry is an essential 
component of the elementary school mathematics curriculum, research exploring 
how students develop spatial understanding of 3D geometric objects in authentic 
learning contexts remains limited. Furthermore, the challenge of bridging visual, 
verbal, and manipulative representations persists as a major gap in the literature. 
Aims: This study aims to address this gap by examining the process through 
which elementary students develop conceptual understanding of 3D geometry 
using a grounded theory approach. 
Method: The study was conducted at a public elementary school in Indramayu 
Regency, West Java, Indonesia. A total of 26 students (20 female and 6 male, aged 
11–12) voluntarily participated. Data were collected through 3D geometric 
visualization tests and in-depth interviews focusing on students' thought 
processes in imagining, comparing, and manipulating spatial forms. Data analysis 
followed the three stages of grounded theory methodology: open coding, axial 
coding, and selective coding, to construct a theory grounded in empirical data. 
Results: The findings reveal that students’ understanding of 3D volume is still in 
a transitional stage, moving from concrete experiences to formal mathematical 
representations. Familiar local contexts alone were found insufficient to bridge 
spatial understanding without adequate visual and pedagogical support. Major 
obstacles included conceptual misconceptions, procedural errors, limited 
visualization skills, and reliance on teacher assistance. 
Conclusion: The core category, “multiple representations as a bridge to spatial 
understanding,” underscores the importance of integrating concrete 
visualization, verbal description, and mathematical symbolism in geometry 
instruction. This study suggests that teachers should design instructional 
strategies that systematically combine visual media, concrete manipulatives, and 
verbal approaches. Such integration is crucial to ensure that local contexts 
effectively serve as a bridge between real-world experiences and abstract 
mathematical understanding. 
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INTRODUCTION 

Three-dimensional (3D) geometry is recognized as a core component of mathematical literacy 

because it equips students with the ability to visualize, analyze, and represent spatial structures. 

Despite its importance, many elementary school students still face significant difficulties in 

transitioning from concrete experiences to abstract reasoning, especially when dealing with concepts 

of volume and unit conversion (Tian et al. 2024; Ocal & Halmatov. 2021). This challenge becomes 

even more urgent in the context of today’s education systems that emphasize higher-order thinking 

skills. A lack of conceptual understanding in geometry at early stages can hinder future achievement 

in mathematics and science-related fields. Thus, investigating how students develop spatial 

reasoning in authentic contexts is essential for improving both pedagogy and curriculum design. 

https://journal.foundae.com/index.php/jasme/article/view/813
https://journal.foundae.com/index.php/jasme/article/view/813
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The urgency of this research is further highlighted by the prevalence of misconceptions and 

procedural errors when students solve geometry problems. For example, studies show that students 

often confuse area with volume, misapply formulas, or rely excessively on rote memorization instead 

of conceptual reasoning (Alzubi et al. 2025; Sudirman et al. 2023). These recurring difficulties 

suggest that conventional teaching strategies focusing only on textbook-based or symbolic 

instruction are insufficient. Instead, there is a pressing need to adopt approaches that integrate local 

contexts, visual aids, and manipulative tools. By situating geometry within students’ cultural and 

environmental experiences, educators can potentially bridge the gap between informal knowledge 

and formal mathematics. 

Moreover, the context of coastal life presents a compelling lens for studying 3D geometry 

learning. Coastal communities are rich in real-world structures such as boats, fish boxes, and 

observation towers that embody geometric principles. However, research reveals that familiar 

contexts do not always guarantee meaningful abstraction if not supported with scaffolding strategies 

(Rau, 2017; Widodo et al., 2017). This underscores the need for empirical studies that explore how 

contextual problems influence cognitive transitions in geometry learning. By focusing on students in 

northern coastal West Java, this research addresses both theoretical significance in cognitive 

development and practical relevance for ethnomathematics-based education. 

This study is designed to explore the cognitive processes of elementary students in 

understanding 3D geometry through grounded theory. Unlike predetermined instructional models, 

grounded theory allows concepts to emerge directly from students’ interactions with tasks and 

contexts. Such an approach provides a more authentic understanding of how learners engage with 

problems, apply strategies, and encounter obstacles. The rationale lies in generating a substantive 

theory that reflects the dynamics of cognitive transition (from concrete experiences to symbolic 

representation) within a specific cultural context. This contributes not only to mathematics 

education but also to broader discussions on contextual learning and ethnomathematics. 

Recent studies have emphasized the role of multimodal and contextual strategies in improving 

students’ geometric reasoning. For example, Alsanousi & Prabhu (2025) developed multimodal 

assessment models to track cognitive proficiency, highlighting the need to integrate behavioral and 

visual metrics in learning. Similarly, Rieder & Aschenbrenner (2024) showed how contextual 

information displays in learning environments foster spatial transitions in problem solving. 

Fiorentino et al. (2023) investigated interdisciplinary mathematics teacher training and found that 

multimodal approaches improve pre-service teachers’ understanding. Ramos et al. (2021) 

highlighted how contextual predictors influence learning trajectories of high-ability students, 

reinforcing the importance of context in shaping mathematical reasoning. These studies collectively 

underscore that contextual and multimodal approaches are increasingly central to fostering 

geometry learning outcomes. Other relevant works have examined transitions in reasoning 

processes. Mendl et al. (2024) reported how students struggle with voluntary task switching without 

contextual cues. Kelber et al. (2024) explored how cognitive control adjustments transfer between 

learners, stressing the role of guided interaction. Halliburton et al. (2024) examined how self-

regulation develops under stress and its implications for sustained learning. Yang et al. (2023) 

highlighted teacher agency as a mediator in implementing innovative pedagogies, while Khurshid et 

al. (2023) synthesized the effects of pedagogical interventions at university level. Taken together, 

these ten studies illustrate that the success of contextual and representational learning depends not 

only on the presence of local context but also on the cognitive, motivational, and instructional 

scaffolds that support abstraction. 

Despite growing interest in contextual and multimodal strategies, few studies have examined 

how elementary students in developing countries cognitively transition from concrete to symbolic 

reasoning within authentic cultural contexts. Most prior works have focused on either advanced 
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learners or pre-service teachers, leaving a gap in understanding how younger students engage with 

geometry in their local environments. Moreover, while ethnomathematics often assumes that local 

contexts automatically enhance learning, evidence suggests that without structured scaffolding, 

familiar contexts can even create confusion. Therefore, a research gap exists in exploring the 

intersection of grounded theory, cultural context, and elementary geometry learning. 

The purpose of this study is to investigate how elementary students in coastal areas develop 

an understanding of 3D geometry concepts, particularly volume, when exposed to contextual 

problems drawn from their daily environment. Specifically, this research aims to identify students’ 

cognitive processes, the obstacles they encounter, and the conditions under which contextual 

problems succeed or fail to support abstraction. By doing so, the study intends to formulate a 

grounded theory that explains the transition from concrete experiences to symbolic reasoning. 

Ultimately, the research contributes to the theoretical discourse on cognitive development while 

offering practical recommendations for teachers and curriculum designers seeking to implement 

culturally relevant yet cognitively effective geometry instruction. 

METHOD 

Research Design 

This study employed a qualitative approach with a grounded theory (GT) design. Grounded 

theory was chosen because it allows for the generation of substantive theories that emerge directly 

from participants’ lived experiences rather than being imposed by pre-existing frameworks (Lim, 

2025; Urcia, 2021). Such a design is well-suited to investigating the process through which 

elementary students transition from concrete experiences to formal reasoning in three-dimensional 

(3D) geometry. By focusing on students’ verbal explanations, problem-solving strategies, and 

representational practices, this research captures the complexity of cognitive development. The GT 

framework was implemented in three systematic phases: open coding, axial coding, and selective 

coding. Open coding involved identifying initial concepts from raw interview and test data, axial 

coding organized these concepts into interrelated categories, and selective coding identified the core 

category representing the central phenomenon. This design ensures that theoretical insights remain 

closely grounded in empirical evidence (Makri & Neely, 2021). Moreover, adopting grounded theory 

aligns with the rationale of studying cognitive transition in authentic contexts, as it prioritizes 

inductive discovery of processes. 

Participants 

The participants of this study consisted of 26 elementary students from grades five and six in 

a coastal school in Indramayu Regency, West Java, Indonesia. The sample included 20 female 

students and 6 male students, with ages ranging between 11 and 12 years. The selection of 

participants was based on voluntary involvement, with informed consent obtained from parents and 

school administrators. Participants represented diverse academic backgrounds, ensuring a range of 

ability levels to capture heterogeneity in geometric understanding. Ethical approval was secured 

from the school authority, and all procedures complied with confidentiality and anonymity 

principles. Such diversity was critical to the grounded theory approach, which seeks to identify both 

common and divergent thinking patterns. This variation in participants allowed the research to 

highlight the challenges faced by both high-performing and low-performing students in solving 

contextual 3D geometry problems. 
Table 1. Profile of Participants by Gender and Age 

Gender Age 11 Age 12 Total 
Female 12 8 20 

Male 4 2 6 
Total 16 10 26 
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Table 1 shows the distribution of participants by gender and age. Of the 26 students, the 

majority were female (20 students) and the remainder were male (6 students). Participants were 

divided between 11 years old (16 students) and 12 years old (10 students). This distribution 

emphasizes sample diversity, which is important in grounded theory-based research. By varying age 

and gender, the study was able to capture the diversity of thinking processes and problem-solving 

strategies in three-dimensional geometry. This heterogeneity also strengthens the study's internal 

validity, as the results obtained do not only represent a specific, homogeneous group but also 

illustrate broader thinking patterns. Furthermore, differences in gender and age can be factors that 

influence students' learning styles, cognitive representations, and how they connect real-world 

contexts with mathematical symbols (Cui et al. 2024; Wei et al. 2025). 

Instruments 

Two instruments were used to collect data: an open-ended 3D geometry test and semi-

structured interviews. The geometry test was designed to assess students’ ability to calculate the 

volume of geometric solids such as rectangular prisms, cubes, triangular prisms, and square 

pyramids. Each test item was contextualized in coastal life settings, such as fish boxes, salt containers, 

and observation towers, to reflect authentic real-world problems. The test emphasized not only 

procedural skills but also conceptual reasoning and the ability to connect mathematical formulas 

with real-life scenarios. Semi-structured interviews were then conducted with selected students 

representing different achievement levels. Interview questions explored students’ reasoning 

processes, strategies, and obstacles encountered when solving geometry tasks. Combining test and 

interview data ensured methodological triangulation, which enhanced the validity and 

trustworthiness of findings (Arias Valencia 2022; Khalil et al. 2024). The instruments were validated 

through expert review and pilot testing with a small group of students before the main study. 

Data Analysis Plan 

Data analysis followed the procedures of grounded theory methodology. First, open coding was 

conducted by carefully examining test responses and interview transcripts line by line, allowing 

emergent concepts to be identified without prior assumptions. These initial codes were then grouped 

into categories during axial coding, which established relationships between student errors, 

strategies, and conceptual understanding. In the final stage, selective coding identified a single core 

category that explained the central process of cognitive transition from concrete to abstract 

reasoning. The iterative process of coding involved constant comparison, memo writing, and 

theoretical sampling to refine categories. Throughout the analysis, peer debriefing and intercoder 

reliability checks were conducted to enhance credibility and minimize researcher bias. The GT 

process also integrated both qualitative insights and descriptive statistics, providing a 

comprehensive picture of students’ performance. The framework of the GT analysis applied in this 

study is illustrated below. 
 

 
Figure 1. GT Analysis Framework 
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Figure 1 illustrates the grounded theory analysis framework used in this study. The process 

begins with open coding, where raw data from tests and interviews are analyzed line by line to 

generate initial codes. The next stage is axial coding, which groups initial codes into broader 

categories based on causal relationships, conditions, and consequences. Finally, selective coding is 

conducted to identify core categories that describe key patterns in students' cognitive processes. For 

example, the core category that emerged in this study is the transition from concrete experience to 

formal reasoning. This figure is important because it demonstrates that the analysis is not only 

descriptive but also theoretical, resulting in a model that can explain learning phenomena in depth. 

This visualization helps readers understand how complex qualitative data are processed into 

substantive theory grounded in students' real-life experiences (Lim, 2025; Urcia, 2021: Makri & 

Neely, 2021). 

RESULTS AND DISCUSSION 
 

Results 

The implementation of geometry learning in a primary school located in a coastal area was 

carried out using a structured, active, and contextual learning approach. The instructional process 

was designed in three main phases: before class, in class, and after class. This approach aims to 

support student engagement and build conceptual understanding by connecting geometric concepts 

with real-life contexts drawn from the students’ everyday environment. 
 

 
Figure 2. Giving instructions 

In the before class phase, students studied introductory geometry material independently at 

home using simple digital media provided by the teacher (See Figure 2). This media included short 

videos, illustrated explanations, and interactive visual materials introducing basic geometric shapes 

and properties. The content was contextualized to reflect local coastal life, such as fishing nets, stilt 

houses, and boat structures. This phase served as a preliminary exposure to help students grasp 

fundamental ideas before engaging in classroom activities. 

The in-class phase served as the core learning session, where the teacher facilitated a series of 

active and collaborative activities. Students worked in groups to engage in discussions, explore 

geometric objects using concrete materials, and solve problems rooted in local contexts. These 

classroom tasks encouraged students to apply geometric reasoning in identifying shapes, measuring 

dimensions, and understanding spatial relationships found in their surroundings. The teacher 

functioned as a facilitator, guiding students through discovery-based learning that emphasized 

relevance and application. 
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Figure 3. Construction Process Through Training 

 

In the after-class phase, students were assigned enrichment tasks to strengthen their 

conceptual understanding. These tasks encouraged students to apply geometry in real-life situations, 

such as measuring and classifying objects around their homes based on geometric properties, or 

creating simple sketches of traditional coastal structures. This phase served as both reinforcement 

and reflection, allowing students to internalize and extend what they had learned in class. 

Throughout the implementation, the researcher conducted observations focusing on student 

interactions, engagement during group discussions, and their ability to apply geometric concepts in 

practical situations. The findings indicated that this structured, contextual approach fostered active 

participation, improved conceptual comprehension, and encouraged students to connect 

mathematics meaningfully with their daily lives in a coastal environment. 

Tabel 2. Descriptive Statistics 
Statistic Value 

Maximum Value 75.00 
Minimum Value 25.00 

Mean 50.67 
Standard Deviation 12.40 

 

The descriptive statistical analysis (See Table 2) of the dataset reveals a mean score of 

approximately 50.67, indicating that the average performance of the individuals in the dataset is 

slightly above the midpoint of the observed values. The maximum score is 75.00, while the minimum 

score is 25.00, suggesting a wide range of variability among the data. This spread implies the 

presence of both high and low-performing individuals within the group. A relatively high mean close 

to the center of the range shows that most data points are moderately distributed rather than being 

heavily skewed toward one end. 

Furthermore, the standard deviation is 12.40, which signifies a moderate level of dispersion 

around the mean. This means that while the average performance is around 50.67, individual scores 

tend to deviate from the mean by about 12.40 points on average. Such a spread suggests a 

heterogeneous group, where performance levels vary considerably. This variation can be useful for 

identifying different learner needs or grouping individuals for targeted interventions based on their 

performance bands. 

 
Figure 4. Average Percentage Score Per Question 
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The assessment results based on the average percentage scores for each question reveal that 

students performed most consistently on Question 1, with an average score of 54.6%. This indicates 

a relatively good understanding of the material covered in this question. Questions 3 and 4 follow 

with 48.8% and 51.2% respectively, suggesting a moderate level of comprehension. Meanwhile, 

Question 2 shows the lowest average score at 47.3%, indicating that students may have found this 

particular item more challenging or that it addressed a concept that requires further reinforcement. 

The variation in percentage scores across the four questions reflects differing levels of student 

mastery. It may be beneficial for educators to review the instructional strategies or materials 

associated with Question 2 to identify possible gaps in understanding. Additionally, focusing on 

targeted interventions for questions with lower performance could help in achieving a more 

balanced and thorough comprehension of the content across all assessed areas. 
 

Students' Thinking Process and Obstacles in Solving Question Number 1 

 
 

 

Figure 5. Students’ Thinking Process in Solving Question Number 1 
 

The Figure 5 illustrates the process of qualitative data analysis using the GT approach, 

specifically in the context of elementary students' understanding of 3D geometry in coastal areas. 

The diagram begins with interview transcripts, which are then broken down into several open codes. 

Each open code represents a specific student statement or behavior, such as "Multiply only two 

dimensions" or "Convert cm³ to liters." This open coding process is conducted inductively without 

predefined categories, aiming to capture the diversity of student responses in a detailed and 

authentic manner. 

The next stage is axial coding, where related open codes are grouped into broader categories 

based on emerging patterns, causal relationships, conditions, or consequences. For instance, codes 

A fisherman has a fish storage box in the shape 

of a rectangular prism with a length of 120 cm, a 

width of 80 cm, and a height of 60 cm. This box 

is used to store the fish he catches before selling 

them at the market. What is the maximum 

capacity of the fish storage box in liters? (Note: 

1 liter = 1,000 cm³) 
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like "Knows conversion, doesn't apply" and "Convert cm³ to liters" are associated with the category 

"Unit conversion skills." This step serves to construct a conceptual structure from dispersed data, 

allowing a deeper understanding of the difficulties students encounter to emerge systematically. 

The final phase is selective coding, which involves identifying a core category that encapsulates 

the central patterns of students’ thinking in understanding the concept of 3D volume. In the diagram, 

all axial categories converge toward a single core idea: "Concrete to formal reasoning." This core 

category indicates that students are undergoing a process of transforming concrete experiences (e.g., 

observing a fisherman’s storage box) into formal mathematical representations (e.g., calculating 

volume using formulas and unit conversions). This process reflects students’ cognitive dynamics in 

developing spatial understanding through contextual and visual experiences. 

The core category "Concrete to formal reasoning" encapsulates the essential transition in 

students’ cognitive development, wherein they move from tangible, everyday experiences to abstract 

mathematical thinking. This transformation is crucial in learning geometry, particularly in 

understanding three-dimensional concepts such as volume. In the context of the study, students 

begin by relating to real-life objects—like a fisherman’s fish box—through sensory or experiential 

knowledge, which then gradually evolves into the application of formal procedures, including the use 

of geometric formulas and unit conversions. This shift highlights not only the integration of 

contextual understanding with mathematical reasoning but also underscores the importance of 

instructional approaches that scaffold learners from familiar, concrete representations to more 

symbolic, formal abstractions. 
 

 
Figure 6. Obstacles in Solving Question Number 1 

 

The axial coding section in the figure illustrates how students’ difficulties in understanding 3D 

geometry are conceptually organized into four major categories. Category 1: Conceptual difficulties 

captures students' misunderstandings about the concept of volume, such as misapplying the formula 

or failing to recognize that a liter is a unit of volume. This reveals a disconnect between students’ 

everyday experiences with physical objects and their formal mathematical knowledge. Meanwhile, 

Category 2: Unit conversion obstacles reflects challenges students face when dealing with standard 

units, especially converting between cubic centimetres and liters. The use of local, non-standard size 

references—like "a bucket" or "a basin"—further emphasizes the lack of familiarity with metric units 

in daily discourse. 

Category 3: Language and context barriers highlights students’ struggles with the linguistic 

complexity of math problems. Phrases such as “maximum volume” or formal question structures can 
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obscure meaning for learners who are more accustomed to informal or local expressions, making it 

harder to access the mathematical task embedded in the context. Lastly, Category 4: Representation 

and format issues addresses students' difficulties in interpreting and solving word problems, 

particularly when they are more familiar with numerical drills than with verbal problem scenarios. 

Altogether, these axial categories point to a core issue “Context fails as bridge” suggesting that, 

despite being drawn from students’ real-life environments, the contextualization of problems often 

does not effectively support their transition from everyday experiences to formal mathematical 

reasoning. 

The core category “Context fails as bridge” signifies a critical disconnect between students’ 

real-life experiences and their ability to engage with formal mathematical reasoning. Although the 

problem scenario is drawn from a familiar coastal context (such as a fisherman’s fish storage box) 

the formal presentation of the task, including symbolic language, unit conversions, and abstract 

representations, often prevents students from recognizing the mathematical relevance of that 

context. Instead of facilitating understanding, the context becomes a barrier when it is not 

meaningfully connected to students’ prior knowledge or everyday practices. This finding 

underscores the importance of designing instructional strategies that not only embed real-world 

contexts but also scaffold students’ transition from informal, intuitive understanding to structured 

mathematical thinking. 

Students' Thinking Process and Obstacles in Solving Question Number 2 

 

 
Figure 7. Students' Thinking Process in Solving Question Number 2 

 

The figure illustrates a qualitative data analysis process based on the GT approach, focusing on 

elementary students’ responses from a coastal area in Indramayu when solving a 3D geometry 

problem involving the volume of a cube in the context of salt farming. Fifteen open codes were 

identified from student interview transcripts, reflecting diverse behaviors and thought patterns 

In a fishing village, salt farmers store their 

harvested salt in containers shaped like cubes, 

each with an edge length of 1 meter. If a farmer 

has 5 containers, all of which are completely 

filled, what is the total volume of salt that can 

be stored in all the containers? (Note: 1 m³ = 

1,000 liters) 
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during problem-solving. For instance, codes such as “Multiply edge three times” and “Only count 

cubes” indicate students’ basic understanding of shape and volume, while “Don’t convert m³” and “Use 

liter instinctively” reveal challenges in understanding and applying unit conversions. Some students 

also exhibited conceptual confusion like “Confused with area” or required teacher assistance (“Need 

teacher hints”), signalling that their thinking processes remain largely concrete and have yet to fully 

transition to abstract reasoning. 

Through axial coding, these open codes were grouped into five broader categories: volume 

concept understanding, unit conversion skills, procedural strategies, visual representation, and 

contextual connection. These categories offer a comprehensive view of the types of difficulties and 

strategies students employed. Ultimately, all axial categories converge on one core category: “From 

intuitive to formal reasoning.” This core concept highlights that students’ understanding develops 

from intuitive approaches grounded in real-life experiences toward formal reasoning based on 

mathematical concepts and procedures. The diagram emphasizes that contextual learning can serve 

as a crucial bridge for helping students build spatial reasoning and abstract thinking in mathematics, 

provided it is supported by appropriate scaffolding and the integration of multiple representations. 

 
Figure 8. Students’ Obstacles in Solving Question Number 2 

 

The diagram visualizes the qualitative data analysis of elementary students’ 3D geometry 

thinking barriers through the lens of grounded theory, specifically when solving a problem involving 

volume of cube containers used by salt farmers in a coastal village. The open coding phase yielded 

fifteen distinct student responses and behaviors, such as “Forget cube formula,” “Ignore ‘liter’ unit,” 

and “No cube image in mind.” These responses reflect fragmented or partial understanding, 

indicating how students often rely on informal knowledge, struggle with formal mathematical 

expressions, or are disconnected from the expected geometric reasoning. These open codes are 

clustered into five axial categories that represent broader themes of difficulty: conceptual 

misunderstanding, unit conversion issues, language and literacy barriers, lack of visual 

representation, and weak connections to real-world experience. 

Each axial category contributes to the emergence of a core category: “Context does not support 

abstraction.” This central theme captures the insight that, although the question is set in a familiar 

real-life setting, such as salt farming, the formal structure and mathematical demands of the task fail 

to bridge the gap between students’ daily experiences and abstract geometric reasoning. Students 

may recognize the context but do not intuitively translate it into formal operations like using the 

volume formula or converting cubic meters to liters. The figure highlights the urgent need to redesign 

word problems to be more culturally and cognitively accessible, incorporating contextual visuals, 
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everyday language, and ethnomathematical approaches that truly link students' lived environments 

with formal mathematics learning. 
 

Students' Thinking Process and Obstacles in Solving Question Number 3 

 
 

 
Figure 9. Thinking Process in Solving Question Number 3 

 

The diagram illustrates the grounded theory coding process applied to understand elementary 

students’ thinking in solving a 3D geometry problem involving the volume of a triangular prism. It 

begins with open coding, which identifies specific observable student responses and behaviors from 

interview transcripts, such as “Confuses base and height” or “Multiplies all dimensions.” These codes 

represent the initial breakdown of qualitative data into meaningful units. From these, patterns and 

themes begin to emerge, capturing both conceptual misunderstandings and procedural errors 

related to geometric volume calculation, especially within the context of real-life, culturally relevant 

problems like a fisherman’s tent. 

Through axial coding, the open codes are organized into broader conceptual categories such as 

“Conceptual Misunderstanding,” “Procedural Challenges,” “Contextual Integration,” and “Visual 

Reasoning Barriers.” These categories reflect the interconnected challenges students’ face, such as 

distinguishing between surface and volume or correctly identifying the base and height of a triangle. 

All axial categories are eventually synthesized into a single core category—“Shifting from Concrete 

to Symbolic Reasoning”—which encapsulates the overarching cognitive transformation needed for 

students to translate tangible, everyday experiences into formal mathematical understanding. This 

model emphasizes the importance of instructional strategies that bridge concrete experiences with 

abstract representations to enhance spatial reasoning. 

To protect his fishing gear from the sun, a fisherman 

builds a tent in the shape of a triangular prism on top 

of his boat. The triangular base of the tent has a base 

length of 1.5 meters and a height of 1 meter, while the 

length of the tent (aligned with the boat) is 2 meters. 

What is the volume of the space inside the tent? 
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Figure 10. Obstacles in Solving Question Number 3 

The diagram illustrates the grounded theory coding process used to explore elementary 

students’ thinking when solving a 3D geometry problem involving the volume of a triangular prism. 

The open coding stage identified specific student responses and difficulties, such as “Ignore triangle 

base,” “Use rectangle formula,” and “Forget to halve base area.” These individual codes represent the 

students’ initial interpretations and reasoning patterns. During axial coding, these open codes were 

grouped into broader thematic categories such as “Understanding triangle properties,” “Volume 

formula misconceptions,” and “Procedural application errors.” This stage helped reveal how different 

cognitive obstacles are interrelated and form consistent categories of difficulty in spatial reasoning. 

In the final selective coding phase, these axial categories were synthesized into a core category: 

“Misalignment of shape and formula.” This core category represents the central challenge many 

students face—bridging their understanding of the triangular prism’s structure with the appropriate 

mathematical operations needed to calculate its volume. Despite contextual cues from the problem 

(e.g., “tent” on a “boat”), students often defaulted to familiar formulas unrelated to the triangular 

prism, indicating a gap between visual-spatial interpretation and symbolic mathematical reasoning. 

The diagram emphasizes how grounded theory helps reveal layered thinking processes and cognitive 

transitions in geometry learning. 
 

Students' Thinking Process and Obstacles in Solving Question Number 4 

 
 

On the coast, there is a fisherman’s observation tower 

in the shape of a square pyramid, which is used to 

monitor sea conditions. The base of the tower is a 

square with side lengths of 4 meters, and the height of 

the tower is 9 meters. What is the volume of the space 

inside the observation tower? 
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Figure 11. Students' Thinking Process in Solving Question Number 4 

The diagram visualizes the process of qualitative data analysis using a Grounded Theory 

approach, specifically applied to the ways elementary students in coastal Indramayu reason through 

a geometry problem involving a square pyramid. The process begins with 15 open codes, which 

represent direct student responses or observable thinking patterns—for example, “Only square 

visible,” “Don’t write formula,” and “Guess base area.” These codes are distilled from students' verbal 

explanations or written work as they attempt to solve a volume problem involving a square pyramid. 

The open codes are grouped into five axial codes, such as Formula application errors, Misconception 

of base area, and Contextual visualization issues. These categories reflect shared difficulties across 

multiple student responses, capturing both procedural and conceptual obstacles. 

These axial codes converge into two selective (core) codes: From object to formula and 

Contextual shape abstraction. The first selective code highlights the cognitive transition from 

perceiving a real-world object (a watchtower) to applying an abstract geometric formula. The second 

captures the struggle some students face in mentally reconstructing a 3D pyramid structure from 

verbal descriptions alone. Together, the categories point to a critical insight: while students may be 

familiar with the physical context (the tower), they often fail to connect that familiarity to formal 

geometric understanding. This suggests that real-world contexts do not automatically support 

abstraction unless guided by instruction that bridges visual familiarity with mathematical reasoning. 
 

 
Figure 12. Obstacles in Solving Question Number 4 
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The diagram visually presents the qualitative coding process derived from elementary students’ 

responses in solving a 3D geometry problem involving a square pyramid structure. The open coding 

phase reveals 15 distinct cognitive and conceptual obstacles, such as forgetting to divide by 3, 

misidentifying the base shape, and assuming the height is a side of the pyramid. These codes are then 

systematically grouped into five axial categories: Formula application errors, Misconception of base 

area, Shape recognition difficulties, Unit and dimensional confusion, and need for contextual support. 

Each category consolidates recurring errors, providing a clearer picture of the patterns in student 

thinking and the specific sources of difficulty. 

These axial categories are then connected to two overarching selective codes: From object to 

formula and Contextual shape abstraction. The first selective code underscores the central cognitive 

transition required—students must move from perceiving the real-world object (a square pyramid) 

to formulating a mathematical representation using the volume formula. The second highlights the 

challenge of abstracting geometrical shapes from familiar contexts like an observation tower. 

Together, they reveal that while students are exposed to real-world structures, transforming these 

into formal mathematical reasoning is still a major hurdle, especially without sufficient visual or 

instructional scaffolds. 

Discussion 

The findings of this study indicate that elementary students’ thinking processes in 

understanding 3D geometry in coastal areas are marked by an incomplete cognitive transition from 

concrete experiences to formal mathematical representations. Although the problems were 

presented using familiar local contexts—such as a fisherman’s fish box, salt containers, tents on 

boats, and observation towers—students frequently failed to associate these real-world objects with 

the symbolic concept of volume. Many students demonstrated intuitive understanding of these 

objects but made errors or showed uncertainty in applying mathematical formulas, performing unit 

conversions, and identifying geometric structures. This cognitive transition was hindered by 

conceptual misconceptions, procedural mistakes, and an overreliance on teacher assistance or 

practical experience alone. Core categories such as “Concrete to formal reasoning” and “From intuitive 

to formal reasoning” highlight the urgent need for instructional strategies that can systematically 

bridge real-world experience with abstract mathematical reasoning. 

Furthermore, although local contexts were used as pedagogical tools, they were not always 

effective as cognitive bridges, as reflected in the core categories “Context fails as bridge” and “Context 

does not support abstraction.” Students often struggled to benefit from contextual references due to 

linguistic misinterpretations, lack of visual support, and failure to link everyday experiences with 

formal geometric concepts and formulas. These barriers were consistently evident across different 

tasks—for example, misidentifying the base of a triangular prism, mistaking a slant edge as the height 

of a pyramid, or using non-standard measurement units such as "bucket" or "basin." These findings 

underscore the necessity of designing culturally contextualized problems accompanied by explicit 

visualizations, scaffolded instruction, and an ethnomathematical approach that meaningfully 

integrates students’ local experiences into formal mathematical understanding. 

These findings align with the work of Downton & Livy (2022), Sudirman et al. (2022), and Tan-

sisman and Aksu (2016), who reported that many students struggle to understand volume concepts 

due to limitations in spatial representation and their comprehension of geometric structures. In this 

study, students tended to rely on intuitive approaches grounded in real-life experience but 

encountered difficulties when required to apply formal formulas or perform unit conversions. Their 

intuitive familiarity with the physical object did not necessarily translate into accurate symbolic or 

procedural responses, especially in solving volume problems. 
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Moreover, Desai et al. (2021) emphasized the importance of representational support in 

helping students develop deeper geometric understanding. When students lack sufficient visual or 

concrete models to comprehend the structure of shapes such as triangular prisms or square 

pyramids, they often apply incorrect formulas, forget to divide the base area, or confuse critical 

attributes such as height and base. This aligns with the findings of Sudirman et al. (2022; 2023), who 

noted that in the absence of visual aids and systematic teacher intervention, students tend to rely on 

trial-and-error strategies or everyday intuition, which do not always align with formal geometric 

principles. Consequently, these findings reinforce the necessity of a learning approach that integrates 

real-world contexts, visual representation, and mathematical reasoning in a coherent and synergistic 

manner. 

This is consistent with van Hiele’s (2002) theory, which posits that students progress through 

distinct levels of geometric thinking, and that many elementary school students remain in the visual 

or descriptive stage, lacking the deductive reasoning skills needed to analyze 3D shapes (Alex & 

Mammen, 2018). As demonstrated in the core categories “Concrete to formal reasoning” and “From 

intuitive to formal reasoning” (Widodo et al. 2017), students in this study had not yet reached the 

level of formal mastery, as they were unable to translate real-world shapes into symbolic 

mathematical operations. 

Theoretically, these findings are supported by Piaget’s cognitive development theory, 

particularly the concrete operational stage, in which children understand mathematical concepts 

through manipulation of tangible objects but still struggle with abstract reasoning in the absence of 

visual or symbolic support. In this sense, real-world contexts are important, but must be 

accompanied by visual or concrete media that help children construct accurate spatial imagery. The 

findings also align with Vygotsky’s theory of the Zone of Proximal Development (ZPD), which 

emphasizes that learners require scaffolding from teachers to move from intuitive knowledge toward 

formal understanding (Margolis, 2020; Rahman, 2024). In this study, many students were only able 

to solve problems after receiving prompts from the teacher, underscoring the critical role of active 

instructional support in bridging their cognitive development. 

In other words, this study enriches the literature on contextual geometry education by 

demonstrating that the success of context-based approaches is not automatic. Context must be 

pedagogically structured to match students' cognitive developmental levels, supported by 

appropriate visual representations, and delivered using accessible language. This research cautions 

that without explicit connections between context and formal mathematical structure, students may 

become even more confused. Therefore, the findings advocate for an instructional design that 

integrates local context, multimodal representations, and the geometric thinking stages as described 

by van Hiele, ensuring that learning is both effective and meaningful. 

Implications 
The findings of this study carry important implications for mathematics education, particularly 

in designing geometry instruction that bridges real-world contexts and abstract reasoning. For 

curriculum developers, the study emphasizes that contextualization must be complemented with 

scaffolding strategies that explicitly guide students from intuitive knowledge toward symbolic 

understanding. Teachers should not only rely on students’ familiarity with objects such as fish boxes 

or salt containers but also integrate visual representations and manipulatives to make the connection 

to formal formulas more explicit. Furthermore, the results support theoretical perspectives of Piaget 

and Vygotsky, highlighting the necessity of developmentally appropriate tasks and scaffolding in the 

Zone of Proximal Development (Margolis, 2020; Rahman, 2024). These implications also extend to 

the development of ethnomathematics-based teaching materials, which must be carefully structured 

to ensure cultural contexts enhance rather than hinder abstraction. 
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Limitations 
Despite its contributions, this study has several limitations that must be acknowledged. First, 

the research was conducted with a relatively small sample of 26 students from a single coastal school, 

which may limit the generalizability of the findings. Second, the study focused exclusively on 

elementary school students aged 11–12, leaving open the question of whether similar cognitive 

processes occur at other age levels. Third, while grounded theory provided rich insights, the reliance 

on qualitative data means that quantitative validation of the emergent categories remains to be 

explored. Fourth, the cultural context of coastal life may not fully represent other local or urban 

contexts where different experiences shape students’ reasoning. Finally, the interviews and 

observations were limited to a short time frame, which may not capture longitudinal changes in 

students’ cognitive development. These limitations suggest caution in overgeneralizing the results, 

while still recognizing their value as exploratory contributions. 

Suggestions 
Future research should expand the scope by including larger and more diverse samples across 

multiple regions and cultural settings to test the robustness of the emergent theory. Longitudinal 

studies are recommended to capture how students’ transitions from concrete to formal reasoning 

evolve over time and with increasing instructional support. Additionally, integrating mixed-method 

designs would allow triangulation between qualitative findings and quantitative measures of spatial 

reasoning, providing stronger evidence for theory building. The use of technology such as augmented 

reality or digital manipulatives could also be investigated as tools to enhance the transition from 

context to abstraction, aligning with current trends in digital education. Collaboration with teachers 

is essential to co-design culturally relevant yet cognitively effective learning materials that address 

the obstacles identified in this study. By pursuing these directions, future research can build on the 

foundation established here to develop more comprehensive models of geometry learning that are 

both contextually meaningful and pedagogically sound. 

CONCLUSION 

This study shows that elementary students’ understanding of volume in three-dimensional 

geometry is still transitional, with persistent misconceptions, procedural errors, and limited spatial 

visualization. Although tasks were presented in familiar local contexts, many students could not 

connect real-life objects with symbolic mathematical concepts, indicating that context alone is 

insufficient without systematic scaffolding. The findings emphasize the need for intentional 

pedagogy: contextual problems should align with students’ developmental stages, supported by 

visual aids, manipulatives, and guided instruction. Theoretically, the results affirm Piaget’s and 

Vygotsky’s perspectives while critiquing the assumption in ethnomathematics that local context 

automatically enhances formal understanding. Practically, this study encourages teachers and 

curriculum designers to develop culturally relevant yet cognitively structured learning materials that 

strengthen students’ spatial and symbolic literacy.  
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