Preparation and Application of Magnetite (Fe$_3$O$_4$) Nanoparticles by Co-precipitation Method for Removal Rhodamine B in Wastewater

Ganesha Antarnusa*
Department of Physics Education,
Universitas Sultan Ageng Tirtayasa,
INDONESIA

*Correspondence: E-mail: ganesha.antarnusa@untirta.ac.id

Article Info

Abstract

Fe$_3$O$_4$ coated with PEG has been successfully synthesized using co-precipitation method to reduce RhB. From the XRD results, it can be seen that all samples are Fe$_3$O$_4$ with the highest Miller index at (311). The crystallinity of Fe$_3$O$_4$ was maintained even though PEG was added. From the SEM-TEM analysis, it can be seen that the two samples have a uniform size distribution. Then, PEG can increase the dispersibility of the sample. From the FTIR analysis it was confirmed that there was PEG content in Fe$_3$O$_4$. From the results of the VSM analysis, it was confirmed that the sample has nearly superparamagnetic properties with a small H_c value. Then, Fe$_3$O$_4$ and Fe$_3$O$_4$/PEG were used to remove RhB in water by magnetic separation process. From the results of the study, it was obtained that the optimum absorption occurred in several parameters, namely the initial concentration of RhB at 100 mg/mL, with a pH of 6, the dose of Fe$_3$O$_4$/PEG at 0.8 g/L and a contact time of 40 minutes at room temperature. At this optimum condition, the absorption has a color removal of 31.1%.

Keywords: Fe$_3$O$_4$; Co-precipitation; magnetism; rhodamine B; wastewater

INTRODUCTION

Over the last few decades there has been an increase in industrial activity. As a result, wastewater from various industries like battery manufacturing industries, mining, chemical manufacturing, tannery, etc., contain toxic heavy metals that cannot be decomposed and have a tendency to accumulate in living organisms which can cause numerous diseases and health problems (Shen, 2009). The waste released from the dye industry is a major environmental problem because it interferes with aesthetics. In addition, some dyes are also toxic or carcinogenic. The presence of colored waste not only interferes with aesthetics, but also inhibits light penetration thereby regulating biological processes in rivers. It is estimated that 10-50% of the dye is lost in the dyeing process waste (Anirudhan, 2009). Therefore, the treatment of liquid waste containing dyes is a concern because it can harm the receiving waters (Zhu, 2011). For example, Rhodamine B (RhB) is one of the most frequently used dyes and is present in wastewater from several different industries (Peng, 2012). The heavy metal content and chemical properties of RhB are harmful to human health (WHO, 2000). One of the dangerous aspects of RhB is that it has a radical alkylation compound (CH$_3$-CH$_3$). Consequently, it can bind to DNA, fats and proteins (Kurniawan, 2018). In addition, RhB also contains chlorine compounds (Cl). Chlorine compounds are dangerous and reactive halogen compounds that are toxic to the body. If ingested, this compound will try to achieve stability by
binding to other compounds. The use of this dye has been banned in Europe since 1984 because Rhodamine B is a strong carcinogen (cancer causing). The Rhodamine B toxicity test conducted on mice and rats has proven its carcinogenic effect. Consumption of RhB in the long term can cause accumulation and can cause physiological disturbances, liver damage, impaired liver function, symptoms of enlarged liver and kidneys or can even cause liver cancer. Thus, it is urgent to clean RhB from effluents to achieve industrial effluent standards before being discharged into the environment (Veisi, 2019). At the same time, in recent years the textile market has grown significantly. In other words, there is the potential to increase the content of Rhodamine B in the water. Therefore, purifying water before use is very important because clean water is one of the basic needs for human existence. Moreover, in recent decades the massive dumping of heavy metals has caused worldwide concern.

Numerous techniques and treatment processes have been used to for the removal of heavy metals from wastewater, including membrane separation, reverse osmosis, solvent extraction, evaporation, precipitation, ion exchange and so on. However, for the application of disposal and treatment of residual metal deposits, some of these methods have several disadvantages, namely high operational and capital costs (Benalia, 2021; Sultan, 2019; Akyol, 2020). Hence, much effort is being made to develop technologies for removing contaminants from aqueous solutions with low-cost materials. Fortunately, recent developments in nano-techniques have shed light on this field. Fe₃O₄ nanoparticles hold tremendous assure in the field of magnetic sensing, magnetic recording, environment, catalysts, magnetic drug targets, medical treatment, magnetic resonance imaging and recording materials for clinical diagnosis in recent decades (Yongsheng, 2022; Ruiz, 2019; Zhang, 2018). Several studies have revealed that magnetic nanoparticles produce a higher adsorption capacity to remove metals due to the limited size effect or high surface-to-volume ratio. Furthermore, by using an external magnetic field, an easy separation of the metal-charged magnetic absorber from the solution can be achieved.

Several methods to obtain Fe₃O₄ can be used, for example co-precipitation (Jesus, 2020), tridax procumbens leaf extract (Ramesh, 2018), ultrasonic-assisted impregnation (Dobaradaran, 2018), reducing agents (Qian, 2019), energy milling (Dewi, 2018), etc. The preparation method is very important to determine the characteristics of Fe₃O₄ such as morphology and size distribution. The most widely used method to prepare Fe₃O₄ is co-precipitation because the process is simple and low cost. In addition, chemical co-precipitation can produce fine stoichiometric particles of single and multicomponent metal oxides (Antarnusa, 2021). Several recent studies have shown that magnetic Fe₃O₄ can be used for wastewater purification, such as to adsorb Cadmium (II), Nickel (II), zinc (II), Copper (II), Mercury (II), Chromium (III, VI), Lead (II) and multiple metals matrix (Jabar, 2022; Rangabhashiyam, 2022). Fe₃O₄ can also be used to remove natural organic compounds, pulp mill effluent color, hardness, desalination and alkalinity (Moosavi, 2020). After adsorption, Fe₃O₄ can be separated from the medium by a simple magnetic process. Thus, the economical, scalable, non-toxic and efficient synthesis of Fe₃O₄ nanoparticles is of great interest for potential applications and fundamental research (Eskandari, 2021; Song, 2018). However, pure Fe₃O₄ is easily oxidized and easily agglomerates in water (Demirezen, 2022). PEG is usually used as a coating on Fe₃O₄ as a protective reagent and dispersing agent (Chavan, 2019). In previous studies, Fe₃O₄ has been coated by several organic substances like diethylene triamine pentaacetic acid (DTPA) and oleic acid (OA) as a stable material for Fe₃O₄ and its functional groups have an adsorption effect on heavy metals (Salman, 2021).

In this study, we carried out research on the purification of artificial wastewater containing RhB, using magnetite Fe₃O₄ nanoparticles and PEG-coated Fe₃O₄ nanoparticles. Many techniques for removing dyes from sewage have been developed, including adsorption, photocatalytic oxidation, sonochemical treatment and electrochemical treatment. Of these several methods, the adsorption method is a promising and attractive alternative for the treatment of wastewater containing RhB if the adsorbent used is cheap and available (Bilgic, 2022; Ojemaye, 2019; Zhang, 2020). We found that Fe₃O₄/PEG can effectively absorb toxic metal ions in wastewater. Furthermore, the adsorption efficiency was confirmed by conducting a series of experiments with several variations of concentration of RhB, pH, dosage of Fe₃O₄/PEG and contact time. It is hoped that this investigation will contribute to the current water purification industry.
METHOD

Chemical
All chemicals were of analytical grade and used as received without any further purification. Ferrous chloride tetrahydrate (FeCl$_2$.4H$_2$O, 99%), ferric chloride hexahydrate (FeCl$_3$.6H$_2$O, 99%), polyethylene glycol-4000 (PEG-4000) and Ammonium hydroxide (NH$_4$OH, 25 %) were purchased from Merck-Germany. All aqueous solutions were prepared with distilled water.

Preparation of PEG-Fe$_3$O$_4$
PEG-coated Fe$_3$O$_4$ were synthesized by co-precipitation method. First, 0.25 g of FeCl$_2$.4H$_2$O and 0.68 g of FeCl$_3$.6H$_2$O (with a molar ratio of Fe$^{2+}$:Fe$^{3+}$= 1:2) were dissolved in 25 ml of distilled water while stirring to obtain a solution of ferrous ions. Then, 25 ml of NH$_4$OH (25%) was slowly dripped into this solution with stirring at 500 rpm. Next, the suspension was stirred at 40°C for 30 minutes and uncoated Fe$_3$O$_4$ (nanoparticle core) was obtained. Then, the precipitation process is carried out using a permanent magnetic field placed under the solution. Then the precipitate was washed seven times and the supernatant was poured. Furthermore, for the purpose of coating, Fe$_3$O$_4$ which is still wet was dissolved in distilled water. Then the PEG was dissolved in distilled water and added to the Fe$_3$O$_4$ solution. Then the mixed solution was stirred for 60 minutes at a speed of 500 rpm. After the reaction, the coated Fe$_3$O$_4$ was deposited by a magnet and washed several times to remove excess polymer. Then the samples were dried in an oven at 50°C for 12 hours (Karagaac, 2022).

Characterization
The XRD diffraction patterns were carried out using XRD; PANalytical X’Pert PRO diffractometer to determine the crystal structure of the samples in the range 10°-90° using a Cu-Kα radiation (λ=0.15406 nm) at 40 kV and 15 mA. Fourier transform infrared (FTIR) spectra of all the samples were collected on Parkin Elmer Frontier Optica spectrometer using KBr pellet technique in the 4000-400 cm$^{-1}$ range. The mean particles, size distribution and morphology of samples was observed by scanning electron microscopy (SEM; JEOL JIB 4610F) and transmission electron microscope (TEM; JEOL-JEM-1400). Magnetic measurements were studied with vibrating sample magnetometer (VSM; Dexing VSM250) measurement system with magnetization loops up to 10 kOe fields at room temperature.

Adsorption
The adsorption of RhB by Fe$_3$O$_4$ and Fe$_3$O$_4$/PEG was carried out at a temperature of 25°C by the adsorption method. The RhB solution was prepared by dissolving an appropriate amount of RhB in distilled water to give a final concentration range from 25 to 150 mg/mL. The pH of the suspension mixture was adjusted between 5-9 using hydrogen chloride (HCl) and sodium hydroxide (NaOH). In general, doses of Fe$_3$O$_4$/PEG were 0.5, 0.6, 0.7, 0.8, 0.9 and 1 g was added to 1 L of RhB solution, and the resulting suspension mixture was carried out at about 500 rpm at room temperature in a shaking incubator. In addition, contact times at 15, 30, 45, 60 and 75 minutes were also performed. The solid magnetite nanoparticles are then separated from the suspension using permanent magnets. UV-Vis was used to determine the amount of RhB remaining in solution. The removal rates η($\%$) and adsorption capacity (q_e) were calculated according to the following equation 1 and 2:

$$\eta \ (\%) = \frac{(C_o-C_e) \times 100}{C_o} \quad (1)$$

$$q_e = \frac{(C_o-C_e)V}{m} \quad (2)$$

Where, C_o is the initial absorbance, C_e is the equilibrium absorbance in the solution (mg/mL), m is the mass of the Fe$_3$O$_4$ and Fe$_3$O$_4$/PEG (g), V is the volume of RhB solution (L) and q_e is the equilibrium adsorption capacity per gram of the Fe$_3$O$_4$ and Fe$_3$O$_4$/PEG (g/L) (Bilgic, 2022).
RESULTS AND DISCUSSION

X-ray diffraction (XRD)

Figure 1 shows the XRD patterns of Fe$_3$O$_4$ and Fe$_3$O$_4$/PEG, respectively. In pattern of Fe$_3$O$_4$ the distinct peaks correspond to crystal planes 220, 311, 400, 422, 511, and 440 of a cubic spinel structure of Fe$_3$O$_4$. Furthermore, from patterns of Fe$_3$O$_4$/PEG the observed diffraction patterns of Fe$_3$O$_4$/PEG nanoparticles showed that the crystal structure of Fe$_3$O$_4$ was maintained, even after being coated with PEG (Guo, 2015).

![Figure 1. XRD patterns of Fe$_3$O$_4$ and Fe$_3$O$_4$/PEG](image)

Fourier-transform infrared spectroscopy (FTIR)

Figure 2 presents the FTIR spectra of the Fe$_3$O$_4$ and Fe$_3$O$_4$/PEG. The signature band of Fe−O stretching mode in Fe$_3$O$_4$ was observed at 567 cm$^{-1}$ (Sobe, 2022). The peak obtained at 1134 cm$^{-1}$ is attributed to the vibrations of the C−O−C bonds (Da, 2022). The band observed at 1630 is due to C=O stretching vibration band of PEG (Antarnusa, 2020). The peak at 2931 cm$^{-1}$ indicates stretching vibration of C−H. For two shapes of samples, the broad peaks at about 3423 and 3170 cm$^{-1}$ are attributed to the O−H vibrations (Namikuchi, 2021). Thus, the data confirmed the formation of PEG in the Fe$_3$O$_4$.

![Figure 2. FTIR spectra of Fe$_3$O$_4$ and Fe$_3$O$_4$/PEG](image)
Scanning Electron Microscope (SEM) and transmission electron microscope (TEM)

The SEM analysis was applied to investigate the surface morphology of the synthesized materials as shown in Figure 3. The Fe₃O₄ have a nearly spherical shape, and the average size of Fe₃O₄ was estimated to be about 32 nm (Da, 2022). The SEM images of the Fe₃O₄/PEG showed that the prepared nanoparticles possess a nearly spherical shape in relatively uniform distribution with an average diameter of about 22 nm, which can be attributed to the addition of PEG acting as a stabilizer and dispersing agent (Figure 3b) (Karimi, 2021). Figure 4 shows the morphology of Fe₃O₄ and Fe₃O₄/PEG were analyzed by transmission electron microscope. The particle size distribution of Fe₃O₄ and Fe₃O₄/PEG NPs are 12 and 11 nm, respectively (Janani, 2021).

Vibrating-sample magnetometer (VSM)

Figure 5 presents the magnetization loops of the samples. All samples exhibit a soft ferromagnetic behavior with small remanence and coercivity value. The saturation magnetization of the samples are 59.16 and 55.34 emu/g corresponding to the Fe₃O₄ and Fe₃O₄/PEG, respectively. Compared with the research conducted by (Frei, 1957) demonstrated the possibility that ferromagnetic materials exhibit behavior that tends to be nearly superparamagnetic before reaching a measure of single-domain behavior. This can be attributed to the material being above the blocking
temperature and pin energies of the regular motion of the domain walls. Several studies have concluded that saturation magnetization increases and coercivity decreases with decreasing surface anisotropy (Seal, 2021). In present study, the coercivity values were maintained from the Fe$_3$O$_4$ indicating that the surface anisotropy of Fe$_3$O$_4$/PEG was increased. Since the shape and size of Fe$_3$O$_4$/PEG is not much different from that of Fe$_3$O$_4$, it can be assumed that the surface modification in the sample plays an important role. The presence of PEG as a non-magnetic material in the sample causes a decrease in its M_s value, as is also seen in Fe$_3$O$_4$/PEG. The influx of cations towards the octahedral sites is increased for the Fe$_3$O$_4$/PEG compared to Fe$_3$O$_4$, which is known to increase the resulting magnetic moment of spinel Fe$_3$O$_4$. Hence, it can be determined that the properties of the PEG group through which Fe$_3$O$_4$ acts as an dispersing agent affect the separation of the Fe ion crystal field, as illustrated in XRD (Suharyadi, 2021).

Figure 5. Magnetization curves of Fe$_3$O$_4$ and Fe$_3$O$_4$/PEG

Adsorption activity

To determine the effect of RhB concentration on RhB degradation, 25, 50, 75, 100, 125 and 150 mg/L RhB solutions were used as shown in Figure 6. The degradation effect increased from 22.8% to 33.5%, when the concentration RhB increased from 25 mg/L to 150 mg/L. It can be seen that the color removal at the initial RhB concentration affects a large number of vacant sites available for adsorption during the initial stage. The initial concentration of RhB in the adsorption process was then used at a concentration of 100 mg/mL (Zhang, 2017).

One of the fundamental parameters that affect the removal of organic pollutants is the pH value of the solution. Hence, the effect of pH on the degradation of RhB in the system was explored by adjusting the pH of the solution to 5, 6, 7, 8 and 9. As shown in Figure 7, the highest RhB degradation rate was observed at pH 5. On the other hand, low degradation rates were observed under neutral and alkaline conditions. Below the optimal pH, the absorption mainly results from electrostatic attraction (Leng, 2013). The color removal of RhB at pH 6 is 25.1%, not much different from pH 5. Thus, the adsorption process is used at pH 6 because it is close to the pH of a neutral solution.
As one of the important applications, the synthesized Fe₃O₄/PEG nanoparticles are used to treat wastewater containing RhB (Wang, 2013). In this study, to treat wastewater containing RhB, synthesized Fe₃O₄ and Fe₃O₄/PEG with different doses were used. Chemical analysis of several sorbents in wastewater before and after treatment showed clearly that the adsorption capacity using different concentrations resulted in different removal percentages (Iorio, 2019). As shown in Figure 8, it is clear that the adsorption capacity of Fe₃O₄/PEG particles increases with decreasing surface area. Thus it can be concluded that the effect of particle size (or surface-to-volume ratio) on the removal of RhB from solution is dramatic (Shen, 2009).
The effect of contact time on decolorization was also observed. It is seen that decolorization increases with increasing contact time as shown in Figure 9. After 40 min saturation occurs and after equilibrium time decolorization stabilizes (Ai, 2011). At the optimum condition the adsorption has a color removal of 31.1%. This decolorization condition is optimal so that the extra time does not add to the decolorization (Jiao, 2018).

CONCLUSION

In this study, Fe₃O₄/PEG was synthesized using co-precipitation method. The properties of the samples were confirmed using XRD, FTIR, SEM, TEM and VSM. Fe₃O₄ and Fe₃O₄/PEG were found to have a homogenous particle size distribution. The addition of PEG can increase the homogeneity of distribution. In addition, the saturation magnetization decreased with the addition of PEG. Then,
Fe$_3$O$_4$ and Fe$_3$O$_4$/PEG were used as RhB degraders. The addition of PEG can increase the removal effect because the surface distribution effect is increasing. By using several parameters, such as the initial concentration of RhB at 100 mg/mL, with a pH of 6, the dose of Fe$_3$O$_4$/PEG at 0.8 g/L and a contact time of 40 minutes at room temperature, the optimum absorbance was obtained. At this optimum condition, the absorption has a color removal of 31.1%.

ACKNOWLEDGMENT

The authors would like to thank all reviewers who have provided suggestions to improve this article.

CONFLICTS OF INTEREST

The authors declare no conflict of interest concerning the publication of this article. The authors also confirm that the data and the article are free of plagiarism.

REFERENCES

