A Review of Potency of Cassava Peel Waste and Seaweed Carrageenan as Environmentally Friendly Bioplastic
Abstract
Plastic waste continues to increase every year along with the increasing number of industries and population. Accumulated plastic waste has a negative impact and harm the environmental. The initiative of 3R (reduce, reuse, and recycle) has been widely promoted, but it is not optimally implemented. The use of organic materials to substitute the synthetic materials in plastic become alternative to prevent this problem continues in the future. Bioplastics are naturally decomposed by the soil and made from renewable materials. This review aims to explore the potency of cassava peels (Manihot esculenta) and seaweed carrageenan (Eucheuma cottonii) as the bioplastic material. The method used is an effective literature review and in accordance with the topic being discussed. The discussion method is carried out based on research results that have been found by previous researchers, which are then integrated with other researchers to get strong results and conclusions. Cassava peel waste and seaweed carrageenan have the potency to be made into bioplastics because they contain polysaccharide that can form a thin layer films based on gelatinization. The development of cassava peel waste and seaweed carrageenan will becoming the promising materials as substitutions for synthetic plastic, and also could help prevent the negative impact of plastic waste. Furthermore, since the cassava and seaweed are naturally abundant, it will promoting the environmental sustainability.
Keywords
Full Text:
PDFReferences
Agustiniano-Osornio, J,, Gonzalez-Soto, R.A., Flores-Huicochea, E., Manrique-Quevedo, N., Sanchez-Hernandez, Bello-Perez, L.A. (2005). Resistant starch production from mango starch using a single-screw extruder. Journal of the Science of Food and Agriculture 85(12): 2105–2110. DOI: https://doi.org/10.1002/jsfa.2208
Akbar, F., Anita, Z., Harahap, H. (2013). Effect of shelf time of biodegradable plastic film from cassava peel starch on its mechanical properties. USU Journal of Chemical Engineering 2(2): 11-15. DOI: https://doi.org/10.32734/jtk.v2i2.1431
Alam, M. N., Nurafiani, Nurmalasari. (2018). Effect of banana cob starch on biodegradation properties of modification of propylene plastic to bioplastic. Dinamika Jurnal Matematika dan Ilmu Pengetahuan Alam 9(1): 48-54.
Al-Salem, S.M., Antelava, A., Constantinou, A., Manos, G., Dutta, A. (2017). A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). Journal of Environment Management, 197: 177–198. DOI: https://doi.org/10.1016/j.jenvman.2017.03.084
Amin, M. R., Chowdhury, M. A., & Kowser, M. A. (2019). Characterization and performance analysis of composite bioplastics synthesized using titanium dioxide nanoparticles with corn starch. Heliyon 5(8): 1–12. https://doi.org/10.1016/j.heliyon.2019.e02009
Andrady, A.L. (2015). Plastics and Environmental Sustainability: Fact and Fiction. John Wiley & Sons.
Arikan, E.B., Bilgen, H.D. (2019). Production of bioplastic from potato peel waste and investigation of its biodegradability. International Advanced Researches and Engineering Journal 3(2): 093-097. DOI: https://doi.org/10.35860/iarej.420633
Avérous, L. (2012). Environmental Silicate Nano – Biocomposites. Springer.
Azahari, N.A., Othman, N., Ismail, H. (2011). Biodegradation studies of polyvinyl alcohol/corn starch blend films in solid and solution media. Journal Physical Science 22 (2): 15-31.
Baratter, M., Weschenfelder, E.F., Stoffel, F., Zeni, M., Piemolini-Barreto, L.T. (2017). Analysis and evaluation of cassava starch-based biodegradable trays as an alternative packaging to fresh strawberry (Fragaria ananassa Cv San Andreas). Food & Nutrition Journal 2(2): 1-7. DOI: 10.29011/2575-7091.100026
Barizão, D.L.C., Crepaldi, M.I., Oliveira, O.S., Oliveira, A.C., Martins, A.F., Garcia, P.S., Bonafé, E.G. (2020). Biodegradable films based on commercial-carrageenan and cassava starch to achieve low production costs. International Journal of Biological Macromolecules 165: 582-590. DOI: https://doi.org/10.1016/j.ijbiomac.2020.09.150
Bodros, E., Pillin, I., Montrelay, N., Baley, C. (2007). Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications?. Composites Science and Technology 67(3): 462–470. DOI: https://doi.org/10.1016/j.compscitech.2006.08.024
Boonniteewanich, J.S., Pitivut, S., Tongjoy, Lapnonkawow, S., Suttiruengwong, S. (2014). Evaluation of carbon footprint bioplastics straw compared to petroleum based straw products. Energy Procedia 56 (1): 518-524. DOI: https://doi.org/10.1016/j.egypro.2014.07.187
Bourtoom, T., Chinnan, M.S. (2008). Preparation and properties of rice starch chitosan blend biodegradable film. Food Science and Technology 41(15): 1633–1641. DOI: https://doi.org/10.1016/j.lwt.2007.10.014
Chisti, Y. (2014). How renewable are the bioplastics?. Biotechnology Advance 32(7): 1361. DOI: http://dx.doi.org/10.1016/j.biotechadv.2014.07.002
Chivrac, F., Gueguen, O., Pollet, E., Ahzi, S., Makradi, A., Averous, L. (2008). Micromechanical modeling and characterization of the effective properties in starch-based nano-biocomposites. Acta Biomaterialia 4(15): 1707–1714. DOI: https://doi.org/10.1016/j.actbio.2008.05.002
Chowdhury, M.A., Badrudduza, M.D., Hossain, N., Rana, M.M. (2022). Development and characterization of natural sourced bioplastic synthesized from tamarind seeds, berry seeds and licorice root. Applied Surface Science Advances 11: 100313. DOI: https://doi.org/10.1016/j.apsadv.2022.100313
Cinar, S.O., Chong, Z.K., Kucuker, M.A., Wieczorek, N., Cengiz, U., Kuchta, K. (2020). Bioplastic production from microalgae: a review. Int J Environ Res Public Health 17(11):3842. DOI: https://doi.org/10.3390/ijerph17113842
Cooper, TA. (2013). Developments in plastic materials and recycling systems for packaging food, beverages and other fast-moving consumer goods. In N. Farmer (Ed.), Trends in Packaging of Food, Beverages and Other Fast-Moving Consumer Goods (FMCG). Woodhead Publishing, United Kingdom. DOI: https://doi.org/10.1533/9780857098979.58
Dean, K.M., Do, M.D., Petinakis, E., Yu, L. (2008). Key interactions in biodegradable thermoplastic starch/poly(vinyl alcohol)/montmorillonite micro and nanocomposites. Composites Science and Technology 68(10): 1453–1462C. DOI: https://doi.org/10.1016/j.compscitech.2007.10.037
Enrione, J., Osorio, F., Pedreschi, F., Hill, S. (2010). Prediction of the glass transition temperature on extruded waxy maize and rice starches in presence of glycerol. Food Bioprocess Technology 3(7): 791–796. DOI: http://dx.doi.org/10.1007/s11947-010-0345-1
European Bioplastic. (2017). Bioplastic Market Data 2017. Report European Bioplastic, Nova-Institue 2017. www.bio-based.eu/markets.
Fathanah, U., Lubis, M.R., Rosnelly, C.M., Moulana, R. (2013). Making and characterizing bioplastic from cassava (manihot utilissima) peel starch with sorbitol as plasticizer. The 7th International Conf. of Chemical Engineering on Science and Applications. Syiah Kuala University, Bandar Aceh.
Gadhave, R.V., Das, A., Mahanwar, P.A., Gadekar, P.T. (2018). Starch based bioplastics: the future of sustainable packaging. Open Journal of Polymer Chemistry 8(2): 21-23. DOI: http://dx.doi.org/10.4236/ojpchem.2018.82003
Galdeano, M.C., Grossmann, M.V.E., Mali, S., Bello-Perez, L.A., Garcia, L.A., Zamudio-Flores, P.B. (2009). Effects of production process and plasticizers on stability of films and sheets of oat starch. Materials Science and Engineering 29(3): 492–498. DOI: https://doi.org/10.1016/j.msec.2008.08.031
Gasperi, J., Dris, R., Rocher, V., Tassin, B.. (2015). Microplastics in the continental area: an emerging challenge. Norman Bulletin 4. https://www.researchgate.net/publication/281918132_Microplastics_in_the_continental_area_an_emerging_challenge
Ghanbarzadeh, B., Almasi, H., Entezami, A.A. (2010). Physical properties of edible modified starch/carboxymethyl cellulose films. Innovative Food Science and Emerging Technologies 11(6): 697– 702. DOI: https://doi.org/10.1016/j.ifset.2010.06.001
Gregory, M. (2009). Environmental implications of plastic debris in marine settings - entanglement, ingestion, smothering, hangers - on, hitch - hiking and alien invasions. Philos. Trans. R. Soc. Lond. B Biol, Sci., 364: 2013–2025. DOI: https://doi.org/10.1098/rstb.2008.0265
Hagemann, R., D'Amico, D. (2009). Bio-plastic composite material, method of making same, and method of using same. Patent. (US 2009/0110654 A1). https://patents.google.com/patent/US20090110654A1/en
Hempel, F., Bozarth, A.S., Lindenkamp, N., Klingl, A., Zauner, S., Linne, U., Steinbüchel, A., Maier, U.G. (2011). Microalgae as bioreactors for bioplastic production. Microb. Cell Factories 2011, 10: 81. DOI: https://doi.org/10.1186/1475-2859-10-81
Hendiarti, N. (2018). Combating Marine Plastic Debris in Indonesia. Presentated on Science to Enable and Empower Asia Pacific for SDGs, Jakarta.
Ismail, N.A., Tahir, S.M., Wahid, A.M., Khairuddin, N.E., Hashim, I., Rosli, N., Abdullah, M.A., (2016). Synthesis and characterization of biodegradable starch – based bioplastics. Material Sciences Forum, 846: 673 – 678. DOI: http://dx.doi.org/10.4028/www.scientific.net/MSF.846.673
Jacoeb, A.M., Nugraha, R., Utari, S.P. (2014). Edible film from lindur fruit starch with addition of glycerol and carrageenan. Journal of Fishery Products Processing 17(1): 14-21. DOI: https://doi.org/10.17844/jphpi.v17i1.8132
Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., Law, K.L. (2015). Plastic waste inputs from land into the ocean. Science, 347: 768–771. DOI: https://doi.org/10.1126/science.1260352
Jones, A., Zeller, M.A., Sharma, S. (2013). Thermal, mechanical, and moisture absorption properties of egg white protein bioplastics with natural rubber and glycerol. Progress Biomater 2(12): 1-13. DOI: https://doi.org/10.1186/2194-0517-2-12
Kamsiati, E., Herawati, H., Purwani, E.Y. (2017). Potential development of biodegradable plastics based on sago starch and cassava in indonesia. Journal of Agricultural Research and Development 36(2): 67-76. DOI: http://dx.doi.org/10.21082/jp3.v36n2.2017.p67-76
Kanagesan, K., Abdulla, R., Derman, E., Sabullah, M.K., Govindan, N., Gansau, J.A. (2022). A sustainable approach to green algal bioplastics production from brown seaweeds of Sabah, Malaysia. Journal of King Saud University – Science 34(7): 102268. DOI: https://dx.doi.org/10.1016/j.jksus.2022.102268
Kaushika, A., Singh, M., Verma, G. (2010). Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydrate Polymers 82(2): 337– 345. DOI: https://doi.org/10.1016/j.carbpol.2010.04.063
Kawijia, Windi, A., Sri L. (2017). Study of characteristics whole cassava starch based edible film with citric acid cross-linking modification. Journal of Agricultural Technology 2(2): 143–152. DOI: http://dx.doi.org/10.21776/ub.jtp.2017.018.02.14
Kopecká, R., KubÃnová, I., Sovová, K., Mravcová, L., VÃtÄ›z T., VÃtÄ›zová, M. (2022). Microbial degradation of virgin polyethylene by bacteria isolated from a landfill site. SN Appl. Sci. 4, 302 (2022). https://doi.org/10.1007/s42452-022-05182-x
Kumar, Y., Shukla, P., Singh, P., Prabhakaran, P.P., Tanwar, V.K. (2014). Bioplastics: a perfect tool for eco-friendly food packaging: a review. Journal of Food Product Development and Packaging 1(1): 01-06.
Kyong, L.S., Gi, S.D., Ryoun, Y.J. (2005). Degradation and rheological properties of biodegradable nanocomposites prepared by melt intercalation method. Fibers Polym 6(4): 289–296. DOI: https://doi.org/10.1007/BF02875664
Lebreton, L., Slat, B., Ferrari, F., Rose, S.B., Aitken, J., Marthouse, R., Noble, K. (2018). Evidence that the great pacific garbage patch is rapidly accumulating plastic. Scientific Report 8(1): 46-66. DOI: https://doi.org/10.1038/s41598-018-22939-w
Ma, X., Chang, P.R., Yang, J., Yu, J. (2009). Preparation and properties of glycerol plast icized-pea starch/zinc oxide-starch bionanocomposites. Carbohydrate Polymers 75(3): 472–478. DOI: https://doi.org/10.1016/j.carbpol.2008.08.007
Machmud, M.N., Fahmi, R., Abdullah, R., Kokarkin, C. (2013). Characteristics of red algae bioplastics/latex blends under tension. International Journal of Science and Engineering 5(2): 81-88. DOI: https://doi.org/10.12777/ijse.5.2.81-88
Mahalakshmi, V. (2014). Evaluation of biodegradation of plastics. International Journal of Innovative Research & Development 3(7): 185-190.
Maneking, E., Sangian, H.F., Tongkukut, S.H.J. (2020). Manufacture and characterization of bioplastic based on biomass with glycerol plasticizer. Journal of Mathematics and Natural Sciences 9(1): 23. DOI: https://doi.org/10.35799/jmuo.9.1.2020.27420
Mantovan, J., Bersaneti, G.T., Faria-Tischer, P.C.S., Celligoi, M.A.P.C., Mali, S. (2018). Use of microbial levan in edible films based on cassava starch. Food Packaging and Shelf Life, 18: 31–36. DOI: https://doi.org/10.1016/j.fpsl.2018.08.003
Marichelvam, M.K., Jawaid, M., Asim, M. (2019). Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers 7(4): 1–14. https://doi.org/10.3390/fib7040032
Maryuni, A.E., Mangiwa, S. (2018). Bioplastic characterization of carrageenan from red seaweed from biak regency made by blending method using sorbitol plasticizer. Avogadro Jurnal Kimia 2(1): 1-9. DOI: https://doi.org/10.31957/.v2i1.887
Mato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C., Kaminuma, T. (2001). Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environment Sciences Technology, 35: 318–324. DOI: https://doi.org/10.1021/es0010498
Maulida, M.S., Tarigan, P. (2016). Production of starch based bioplastic from cassava peel reinforced with microcrystalline celllulose avicel ph101 using sorbitol as plasticizer. In Journal Physic Conference Series, 710: 12012. DOI: http://dx.doi.org/10.1088/1742-6596/710/1/012012
McCormick, A., Hoellein, T.J., Mason, S.A,, Schluep, J., Kelly, J.J. (2014). Microplastic is an abundant and distinct microbial habitat in an urban river. Environment Sciences Technology 48 (20): 11863 –11871. DOI: https://doi.org/10.1021/es503610r
Mufrodi, Z., Septianingsih, L., Ariandi, T. (2019). Capsule shells from Eucheuma cottonii seaweed with plasticizer sorbitol and filler TiO2. Ahmad Dahlan International Conference Series on Engineering and Science, 2019: 4-8. DOI: https://dx.doi.org/10.2991/adics-es-19.2019.2
Muller, J., González-MartÃnez, C., Chiralt, A. (2017). Combination of poly(lactic) acid and starch for biodegradable food packaging. Materials 10(8): 952. DOI: https://doi.org/10.3390/ma10080952
Ortiz, J.A., Carvalho, C.W., Ascheri, D.P., Ascheri, J.L., Andrade, C.T. (2010). Effect of sugar and water contents on nonexpanded cassava flour extrudates. Food and Science Technology [Ciencia e Tecnologia de Alimentos] 30(1): 205–212. DOI: https://doi.org/10.1590/S0101-20612010000100030
Pulungan, M.H., Kapita, R.A., Dewi, I.A. (2020). Optimization on the production of biodegradable plastic from starch and cassava peel flour using response surface methodology. IOP Conference Series: Earth and Environmental Science 475(1): 012019. DOI: 10.1088/1755-1315/475/1/012019
Purwaningrum, P. (2016). Efforts to reduce the generation of plastic waste in the environment. Indonesian Journal of Urban and Environmental Technology 8(2): 141-147. DOI: https://doi.org/10.25105/urbanenvirotech.v8i2.1421
Putri, G.R. (2019). Bioplastic characterization of seaweed (Eucheuma cottoni). Risenologi 4(2): 59–64. DOI: https://doi.org/10.47028/j.risenologi.2019.42.52
Ramadhan, M.O., Handayani, M.N. (2020). The potential of food waste as bioplastic material to promote environmental sustainability: a review. IOP Conference Series: Materials Science and Engineering 980(1): 012082. DOI: 10.1088/1757-899X/980/1/012082
Raphael, M., Yona, B., Stephen, K., Ephraim, N., Patrick, R., Settumba, M., Samuel, K. (2011). Amylopectin molecular structure and functional properties of starch from three ugandan cassava varieties. Journal of Plant Breeding and Crop Science 3(9): 195-202.
Reddy, L., Reddy, S., Gupta, A. (2013). Study of bio-plastics as green and sustainable alternative to plastics. International Journal of Emerging Technology and Advanced Engineering, 3: 76–81.
Rochman, C.M., Browne, M.A., Halpern, B.S., Hentschel, B.T., Hoh, E., Karapanagioti, H.K., Rios-Mendoza, L.M., Takada, H., Teh, S., Thompson, R.C. (2013). Classify plastic waste as hazardous. Nature, 494: 169 – 171. DOI: https://doi.org/10.1038/494169a
Rusli, A., Metusalach, M., Tahir, M.M. (2017). Characterization of carrageenan edible films plasticized with glycerol. Indonesian Journal of Fishery Products Processing 20(2): 219-229. DOI: https://doi.org/10.17844/jphpi.v20i2.17499
Sabella, A. (2019). Characterization of bioplastic from seaweed (eucheuma cottoni) and cassava starch with addition of starch from durian seed waste. Risenologi 4(2): 80-89. DOI: https://doi.org/10.47028/j.risenologi.2019.42.54
Sanyang, M.L., Sapuan, S.M., Jawaid, M., Ishak, M.R., Sahari, J. (2016). Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (Arenga pinnata) starch for food packaging. Journal of Food Sciences Technology 53(1): 326 – 336. DOI: https://doi.org/10.1007/s13197-015-2009-7
Septiani, B.A., Arianie, D.M., Risman, V.F., Handayani, W., Kawuryan, I.S. (2019). Plastic waste management in salatiga: practices and challenges. Enviromental Sciences Bulletin 17(1): 90-99. DOI: https://doi.org/10.14710/jil.17.1.90-99
Sharuddin, S.D., Abnisa, F., Daud, W.M., Aroua, M.K. (2016). A review on pyrolysis of plastic wastes. Energy Conversion Management, 115: 308–326. DOI: https://doi.org/10.1016/j.enconman.2016.02.037
Shen, X.L., Wu, J.M., Chen, Y., Zhao, G. (2010). Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocolloids 24(2): 285–290. DOI: https://doi.org/10.1016/j.foodhyd.2009.10.003
Sinaga, R.F., Ginting, G.M., Gintang, H.M., Hasibuan, S. (2014). The effect of added glycerol on the properties of tensible strength and elongation at break up of bioplastic from taro tuber starter. USU Journal of Chemical Engineering 3(2): 19–24. DOI: https://doi.org/10.32734/jtk.v3i2.1608
Song, J.H., Murphy, R.J., Narayan, R., Davies, G.B. (2009). Biodegradable and compostable alternatives to conventional plastics. Phil. Trans. Biol. Sci., 364: 2127 – 2139. DOI: https://doi.org/10.1098/rstb.2008.0289
Sultan, N. F. K., Johari, W. L. W. (2017). The development of banana peel/corn starch bioplastic film: a preliminary study. Bioremediation Science and Technology Research 5(1): 12–17. https://doi.org/10.54987/bstr.v5i1.352
Suryati, S., Meriatna, M., Marlina, M. (2017). Optimization of bioplastic manufacturing process from starch of cassava peel waste. Jurnal Teknik Kimia Unimal 5(1): 78-91. DOI: https://doi.org/10.29103/jtku.v5i1.81
Susanti, S., Al-Karoma, D., Mulyani, D., Masruri, M. (2017). Physical properties and characterization of cassava peel waste modified by esterification. The Journal of Pure and Applied Chemistry Research 6(3): 255-260. DOI: http://dx.doi.org/10.21776/ub.jpacr.2017.006.03.346
Sushmitha, B.S., Vanitha, K.P., Rangaswamy, B.E. (2016). Bioplastics – a review. International Journal of Modern Trends in Engineering and Research 3(4): 411-413.
Syuhada, M., Sofa, S.A., Sedyadi, E. (2020). The effect of cassava
peel starch addition to bioplastic biodegradation based on chitosan on soil and river water media. Biology, Medicine, & Natural Product Chemistry 9(1): 7-13. DOI: 10.14421/biomedich.2020.91.7-13
Tang, X., Alavi, S. (2011). Recent advances in starch, polyvinyl alcohol-based polymer blends, nanocomposites qnd their biodegradability. Carbohydrate Polymers 85(1): 7–16. DOI: https://doi.org/10.1016/j.carbpol.2011.01.030
Teuten, E., Rowland, S., Galloway, T., Thompson, R. (2007). Potential for plastics to transport hydrophobic contaminants. Environment Sciences Technology, 41: 7759 – 7764. DOI: https://doi.org/10.1021/es071737s
Wahyuningtiyas, N.E., Suryanto, H. (2017). Analysis of biodegradation of bioplastics made of cassava starch. Journal of Mechanical Engineering Science and Technology 1(1): 24-31. DOI: 10.17977/um016v1i12017p024
Wan, Y.Z., Honglin, L., He, F., Liang, H., Huang, Y., Li, X. (2009). Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Composites Science and Technology 69(10): 1212–1217. DOI: https://doi.org/10.1016/j.compscitech.2009.02.024
Widiarto, S., Yuwono, S.D., Rochliadi, A., Arcana, I.M. (2017). Preparation and characterization of cellulose qnd nanocellulose from agro-industrial waste-cassava peel. IOP Conference Series: Materials Science and Engineering 176(1): 012052. DOI: 10.1088/1757-899X/176/1/012052
Wu, Y., Geng, F., Chang, P.R., Yu, J., Ma, X. (2009). Effect of agar on the microstructure and performance of potato starch film. Carbohydrate Polymers 76(2): 299–304. DOI: https://doi.org/10.1016/j.carbpol.2008.10.031
Wullandari, P., Sedayu, B.B., Novianto, T.D., Prasetyo, A.W. (2021). Characteristic of semi refined and refined carrageenan flours used in the making of biofilm (bioplastic). IOP Conference Series: Earth and Environmental Science 733(1): 012112. DOI: 10.1088/1755-1315/733/1/012112
Yang, J., Dong, X., Wang, J., Ching, Y. C., Liu, J., Chunhui Li, Baikeli, Y., Li, Z., Mohammed Al-Hada, N., and Xu, S. (2022). Synthesis and properties of bioplastics from corn starch and citric acid-epoxidized soybean oil oligomers. Journal of Materials Research and Technology 20: 373–380. https://doi.org/10.1016/j.jmrt.2022.07.119
Zamudio-Flores, P.B., Bautista-Baños, S., Salgado-Delgado, R., Bello-Perez, L.R. (2009). Effect of oxidation level on the dual modification of banana starch: the mechanical and barrier properties of its films. Journal of Applied Polymer Science 112(7): 822–829. DOI: https://doi.org/10.1002/app.29433
Zhang, S.D., Zhang, Y.R., Zhu, J., Wang, X.L., Yang, K.K., Wang, Y.Z. (2007). Modified corn starches with improved comprehensive properties for preparing thermoplastics. Starch/Stärke, 59(2): 258–268. DOI: https://doi.org/10.1002/star.200600598
Zhang, Y., Han, J.H. (2008). Sorption isotherm and plasticization effect of moisture and plasticizers in pea starch film. Journal of Food Science 73(7): E313–E324. DOI: https://doi.org/10.1111/j.1750-3841.2008.00867.x
DOI: https://doi.org/10.58524/ijhes.v1i3.150
Refbacks
- There are currently no refbacks.
International Journal of Hydrological and Environmental for Sustainability is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Published by Foundation of Advanced Education (FoundAE). ISSN Numbers : p-ISSN 2828-6405 | e-ISSN 2828-5050